
JS, JQuery, Ajax

Slides are from MIT – AITI, Marty Stepp, Jessica

Miller, and Victoria Kirst, Ruth Betcher

and Ruth Christie

Based on Internet Standards
 XHTML/HTML and CSS

– To display the data

 JavaScript (XMLHttpRequest calls)

– To exchange data asynchronously with the server

 XML

– To tranfer the data

 DOM (document object model)

– To navigate the hierarchy of X/HTML elements

Variables

 A variable is a name associated with a piece

of data

 Variables allow you to store and manipulate

data in your programs

 Think of a variable as a mailbox which

holds a specific piece of information

Variables

 In JavaScript variables

are created using the
keyword var

 Example:

var x = 10;

var y = 17;

var color = “red”;

var name = “Katie”;

Variables

 It is vitally important to distinguish between
the name of the variable and the value of the
variable

 For example, in the expression var
color=“red”, color is the name of the

variable and red is the value. In other
words, color is the name of the box while
red is what is inside the box

Data Types

 Primitive Data Types

– Numbers

– Strings

– Boolean (True, False)

 Composite Data Types

– Arrays

– Objects

Primitive Data Types

 Numbers - A number can be either an
integer or a decimal

 Strings - A string is a sequence of letters or
numbers enclosed in single or double quotes

 Boolean - True or False

Variables & Data Types

 JavaScript is untyped; It does not have

explicit data types

 For instance, there is no way to specify that

a particular variable represents an integer,

string, or real number

 The same variable can have different data

types in different contexts

Implicit Data Types

 Although JavaScript does not have explicit

data types, it does have implicit data types

 If you have an expression which combines

two numbers, it will evaluate to a number

 If you have an expression which combines a

string and a number, it will evaluate to a

string

Example: Variables

var x = 4;

var y = 11;

var z = “cat”;

var q = “17”;

Ans = x + y;

Ans => 15

Ans = z + x;

Ans => cat4

Ans = x + q;

Ans => 417

More Examples

var x = 4;

var y = 11;

var z = “cat”;

var q = “17”;

Ans = x + y + z;

Ans => 15cat

Ans = q + x + y;

Ans => 17411

Arrays

 An array is a compound data type that
stores numbered pieces of data

 Each numbered datum is called an element
of the array and the number assigned to it is
called an index.

 The elements of an array may be of any
type. A single array can even store elements
of different type.

Creating an Array

 There are several different ways to create an

array in JavaScript

 Using the Array() constructor:

- var a = new Array(1, 2, 3, 4, 5);

- var b = new Array(10);

 Using array literals:

- var c = [1, 2, 3, 4, 5];

Accessing Array Elements

 Array elements are accessed using the []

operator

 Example:

– var colors = [“red”, “green”, “blue”];

– colors[0] => red

– colors[1] => green

Adding Elements

 To add a new element to an array, simply

assign a value to it

 Example:

var a = new Array(10);

a[50] = 17;

Array Length

 All arrays created in JavaScript have a

special length property that specifies how

many elements the array contains

 Example:

– var colors = [“red”, “green”, “blue”];

– colors.length => 3

Primitive Data Types versus

Composite Data Types

 Variables for primitive data types hold the

actual value of the data

 Variables for composite types hold only

references to the values of the composite

type

Variable Names

 JavaScript is case sensitive

 Variable names cannot contain spaces,

punctuation, or start with a digit

 Variable names cannot be reserved words

Programming Tips

 It is bad practice to change the implicit type

of a variable. If a variable is initialized as a

number, it should always be used as an

number.

 Choose meaningful variable names

Statements

 A statement is a

section of

JavaScript that can

be evaluated by a

Web browser

 A script is simply a

collection of

statements

Examples:

Last_name = “Dunn”;

x = 10 ;

y = x*x ;

Programming Tips

 It is a good idea to

end each program

statement with a

semi-colon;

Although this is not

necessary, it will

prevent coding

errors

 Recommended:

a = 3;

b = 4;

 Acceptable:

a = 3; b = 4;

 Wrong:

a =

3;

Operators

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

++ Increment

- - Decrement

= = Equality

! = Inequality

! Logical NOT

&& Logical AND

|| Logical OR

? Conditional

Selection

Aggregate Assignments

 Aggregate assignments provide a shortcut
by combining the assignment operator with
some other operation

 The += operator performs addition and
assignment

 The expression x = x + 7 is equivalent to the
expression x += 7

Increment and Decrement

 Both the increment

(++) and decrement

(- -) operator come in

two forms: prefix and

postfix

 These two forms yield

different results

x = 10; x = 10;

y = ++ x; z = x ++;

 y = 11

 z = 10

 x = 11 in both cases

Control Structures

 There are three basic types of control
structures in JavaScript: the if statement,

the while loop, and the for loop

 Each control structure manipulates a block

of JavaScript expressions beginning with {

and ending with }

The If Statement

 The if statement

allows JavaScript

programmers to a

make decision

 Use an if statement

whenever you come to

a “fork” in the

program

If (x = = 10)

{ y = x*x;

}

else

{ x = 0;

}

Repeat Loops

 A repeat loop is a group of statements that is

repeated until a specified condition is met

 Repeat loops are very powerful

programming tools; They allow for more

efficient program design and are ideally

suited for working with arrays

The While Loop

 The while loop is used

to execute a block of

code while a certain

condition is true

count = 0;

while (count <= 10) {

document.write(count);

count++;

}

The For Loop

 The for loop is used when there is a need to

have a counter of some kind

 The counter is initialized before the loop

starts, tested after each iteration to see if it

is below a target value, and finally updated

at the end of the loop

Example: For Loop

// Print the numbers 1

through 10

for (i=1; i<= 10; i++)

document.write(i);

i=1 initializes the counter

i<=10 is the target

value

i++ updates the

counter at the end

of the loop

Example: For Loop

<SCRIPT
LANGUAGE=

"JavaScript">

document.write("1");

document.write("2");

document.write("3");

document.write("4");

document.write("5");

</SCRIPT>

<SCRIPT

LANGUAGE=

"JavaScript">

for (i=1; i<=5; i++)

document.write(i);

Functions

 Functions are a collection of JavaScript

statement that performs a specified task

 Functions are used whenever it is necessary

to repeat an operation

Functions

 Functions have inputs and outputs

 The inputs are passed into the function and

are known as arguments or parameters

 Think of a function as a “black box” which

performs an operation

Defining Functions

 The most common way to define a function
is with the function statement.

 The function statement consists of the
function keyword followed by the name of
the function, a comma-separated list of
parameter names in parentheses, and the
statements which contain the body of the
function enclosed in curly braces

Example: Function

function square(x)

{return x*x;}

z = 3;

sqr_z = square(z);

Name of Function: square

Input/Argument: x

Output: x*x

Example: Function

function sum_of_squares(num1,num2)

{return (num1*num1) + (num2*num2);}

function sum_of_squares(num1,num2)

{return (square(num1) + square(num2));}

jQuery

Slides are from Marty Stepp, Jessica

Miller, and Victoria Kirst

What is jQuery?

 jQuery is a fast and concise JavaScript

Library that simplifies HTML document

traversing, event handling, animating, and

Ajax interactions for rapid web

development. (jQuery.com)

Why learn jQuery?

 Write less, do more:

– $("p.neat").addClass("ohmy").show("slow");

 Performance

 Plugins

 It’s standard

 … and fun!

window.onload

 We cannot use the DOM before the page

has been constructed. jQuery gives us a

more compatibile way to do this.

– The DOM way

– The direct jQuery translation

– The jQuery way

window.onload = function() { // do stuff with the DOM }

$(document).ready(function() { // do stuff with the DOM });

$(function() { // do stuff with the DOM });

Selecting groups of DOM objects
name description

getElementById returns array of descendents with the

given tag, such as "div"

getElementsByTagName returns array of descendents with the

given tag, such as "div"

getElementsByName returns array of descendents with the

given name attribute (mostly useful

for accessing form controls)

querySelector * returns the first element that would be

matched by the given CSS selector

string

querySelectorAll * returns an array of all elements that

would be matched by the given CSS

selector string

http://www.w3schools.com/jsref/met_doc_getelementbyid.asp
http://www.w3schools.com/jsref/met_doc_getelementsbytagname.asp
http://www.w3schools.com/jsref/met_doc_getelementsbyname.asp
https://developer.mozilla.org/en/DOM/Element.querySelector
https://developer.mozilla.org/en/DOM/Element.querySelectorAll

jQuery / DOM comparison
DOM method jQuery equivalent

getElementById("id") $("#id")

getElementsByTagName("tag") $("tag")

getElementsByName("somename") $("[name='somename']")

querySelector("selector") $("selector")

querySelectorAll("selector") $("selector")

The jQuery object

 The $ function always (even for ID selectors) returns an

array-like object called a jQuery object.

 The jQuery object wraps the originally selected DOM

objects.

 You can access the actual DOM object by accessing the

elements of the jQuery object.

// false
document.getElementById("id") == $("#myid");
document.querySelectorAll("p") == $("p");
// true
document.getElementById("id") == $("#myid")[0];
document.getElementById("id") == $("#myid").get(0);
document.querySelectorAll("p")[0] == $("p")[0];

Using $ as a wrapper

 $ adds extra functionality to DOM elements

 passing an existing DOM object to $ will

give it the jQuery upgrade

// convert regular DOM objects to a jQuery object
var elem = document.getElementById("myelem");
elem = $(elem);
var elems = document.querySelectorAll(".special");
elems = $(elems);

DOM context identification

 You can use querySelectorAll() and querySelector() on any

DOM object.

 When you do this, it simply searches from that part of the

DOM tree downward.

 Programmatic equivalent of a CSS context selector

var list = document.getElementsByTagName("ul")[0];
var specials = list.querySelectorAll('li.special');

find / context parameter

 jQuery gives two identical ways to do

contextual element identificationvar elem = $("#myid");

// These are identical
var specials = $("li.special", elem);
var specials = elem.find("li.special");

http://api.jquery.com/find/

DOM tree traversal example

<p id="foo">

This is a paragraph of text with a

link.

</p>

jQuery traversal methods

 http://api.jquery.com/category/traversing/

http://api.jquery.com/category/traversing/

jQuery tutorials

 Code Academy

http://www.codecademy.com/courses/you-and-

jquery/0?curriculum_id=4fc3018f74258b0003001

f0f#!/exercises/0

 Code School:

http://www.codeschool.com/courses/jquery-air-

first-flight

http://www.codecademy.com/courses/you-and-jquery/0?curriculum_id=4fc3018f74258b0003001f0f
http://www.codeschool.com/courses/jquery-air-first-flight

Ajax/JQuery

$.ajax({
type: 'POST',
url: '/hello',
data: {'student1': 'Mahdi' },
dataType: 'json', // what we expect from server
async: true, // what if the false one
success: function(dataFromServer) {

var result = JSON.parse(dataFromServer);
alert('Just got back from server side!! with '+ result)

},
error: function() {

alert('Something bad happened in our server !!')
}

});

•async:false = Code paused. (Other code waiting for this to finish.)

•async:true = Code continued. (Nothing gets paused. Other code is not waiting.)

