
CS 3300

Intro to Software Engineering

Slides are based on Alex Orso.

Mahdi Roozbahani

Software Design

Software design

• System organization that satisfies

functional and non-functional

requirements

• Input:

• Specification – what to do

• Output:

• Design document – how to do it

Why design?

• good design ➡ good code

• easier to code, test, maintain,
change

• easier to understand impact of
requirements changes

• large projects – divide across
teams, but have unifying design

Overview of Design Phase

• Main activities

• Architectural (high-level) design

• Decompose the product into modules

• Identify connections between them

• Detailed (low-level) design

• Choose data structures

• Select/design algorithms

• UI design (if applicable)

• Design testing

• Make sure design is correct – performed throughout phase

• Two key aspects of product for design: actions & data

=> action-oriented, data-oriented, or hybrid

Design: art or science?

• Design is the most creative phase

• No set rules that you must follow

• A lot of its success boils down to

experience

• but there are principles and patterns

which improve quality of design

Architectural design

Architectural design

• Process of identifying and assigning the

responsibility for aspects of functional

behavior to various modules or components

of a software system

• The communication interfaces among

the components must also be specified

https://www.youtube.com/watch?time_continue=1&v=sb7y8R

eF_IQ&feature=emb_logo

https://www.youtube.com/watch?time_continue=1&v=sb7y8ReF_IQ&feature=emb_logo

System architecture

• Reflects the basic strategy that is used

to structure a system.

• Three organizational styles are widely

used:

• A shared data repository style;

• A shared services and servers style;

• An abstract machine or layered style.

The repository model

• Sub-systems must exchange data. This
may be done in two ways:

• Shared data is held in a central DB or
repository and may be accessed by all
sub-systems;

• Each sub-system maintains its own DB
and passes data explicitly to other sub-
systems.

• When large amounts of data are to be
shared, the repository model of sharing
is most commonly used.

E.g., CASE toolset architecture or

Email

Repository model characteristics

• Advantages

• Efficient way to share large amounts of data;

• Sub-systems need not be concerned with how
data is managed (centralised management of
backup, security, etc.)

• Sharing model is published as the repository
schema
➡ easy integration

• Disadvantages

• Sub-systems must agree on a repository data
model ➡ compromise;

• Data evolution is difficult and expensive;

• No scope for specific management policies;

Client-server model

• Distributed system model which shows how
data and processing is distributed across a
range of components.

• Set of stand-alone servers that provide
specific services such as printing, data
management, etc.

• Set of clients which call on these services.

• Network that allows clients to access
servers.

E.g., film and picture library

Client-server characteristics

• Advantages

• Distribution of data is straightforward;

• Makes effective use of networked systems. May require

cheaper hardware;

• Highly decoupled;

• Easy to add new servers or upgrade existing servers.

• Disadvantages

• No shared data model, so sub-systems use different data

organisation. Data interchange may be inefficient;

• Redundant management in each server;

• No central register of names and services – it may be

hard to find out what servers and services are available.

Layered model

• Used to model the interfacing of sub-
systems.

• Organises the system into a set of layers (or
abstract machines) each of which provide a
set of services.

• Supports the incremental development of
sub-systems in different layers. When a
layer interface changes, only the adjacent
layer is affected.

E.g., Web Application

core

js

html

User intercation

Control styles

• Are concerned with the control flow between

sub-systems. Distinct from the system

decomposition model.

• Centralized control

• One sub-system has overall responsibility for

control and starts and stops other sub-systems.

• Event-based control

• Each sub-system can respond to externally

generated events from other sub-systems or the

system’s environment.

Centralized call-return model

https://www.ijser.org/researchpaper/Control-Models-in-Software-Engineering.pdf

https://www.ijser.org/researchpaper/Control-Models-in-Software-Engineering.pdf

Event-driven systems

• Driven by externally generated events where
the timing of the event is out with the control
of the sub-systems which process the event.

• Two principal event-driven models
• Broadcast models. An event is broadcast to all

sub-systems. Any sub-system which can handle
the event may do so;

• Interrupt-driven models. Used in real-time systems
where interrupts are detected by an interrupt
handler and passed to some other component for
processing.

Broadcasting

Interrupt-driven control

Detailed design

Detailed design

Detailed design is the process of

specifying the logical behavior of each

component

• Algorithm selection

• Data structure representation

• Combination of natural language, pseudo

code, graphical representation

Design models

• Different design models may be

produced during the design process

• Each model presents different

perspectives on the design

Behavioural models

• Behavioural models are used to describe the

overall behaviour of a system.

• Two types of behavioural model are:

• Data processing models that show how data is

processed as it moves through the system;

• State machine models that show the systems

response to events.

• These models show different perspectives so

both of them may be needed to describe the

system’s behaviour.

Data-processing models

• Data flow diagrams (DFDs) may be
used to model the system’s data
processing.

• These show the processing steps as
data flows through a system.

• Simple and intuitive notation that
customers can understand.

• Show end-to-end processing of data.

E.g., order processing DFD

State machine models

• Model the behavior of the system in response
to external and internal events.

• They show the system’s responses to stimuli.

• State machine models show system states as
nodes and events as arcs between these
nodes. When an event occurs, the system
moves from one state to another.

• Statecharts are an integral part of the UML
and are used to represent state machine
models.

Statecharts

• Allow for decomposing a model into

sub-models (see following slide).

• A brief description of the actions is

included following the ‘do’ in each state.

• Can be complemented by tables

describing the states and the stimuli.

E.g., microwave oven model

E.g., microwave oven operation

Object models

• Object models describe the system in terms of
object classes and their associations.

• An object class is an abstraction over a set of
objects with common attributes and the services
(operations) provided by each object.

• Natural ways of reflecting the real-world entities
manipulated by the system

• Object class identification is recognised as a difficult
process requiring a deep understanding of the
application domain

• Object classes reflecting domain entities are
reusable across systems

Object models and the UML

• Object classes are rectangles with the

name at the top, attributes in the middle

section and operations in the bottom

section;

• Relationships between object classes

(known as associations) are shown as

lines linking objects;

• Inheritance is referred to as

generalisation and is shown ‘upwards’

rather than ‘downwards’ in a hierarchy.

E.g., library class hierarchy

E.g., object aggregation

Object behaviour modelling

• A behavioural model shows the

interactions between objects to produce

some particular system behaviour that

is specified as a use-case.

• Sequence diagrams (or collaboration

diagrams) in the UML are used to model

interaction between objects.

Issue of electronic items

Design Principles

Architecture & system characteristics

System non-functional characteristics may affect design.
Examples:

• Performance
• Localize critical operations and minimize communications.

Use large rather than fine-grain components.

• Security
• Use a layered architecture with critical assets in the inner

layers.

• Safety
• Localize safety-critical features in a small number of sub-

systems.

• Availability
• Include redundant components and mechanisms for fault

tolerance.

• Maintainability
• Use fine-grain, replaceable components.

Design Concepts

• Conceptual integrity / coherence

• Coupling / cohesion

• Information hiding

• Abstraction / refinement

• Rationale / tradeoffs

Coupling and cohesion

• Coupling - the extent to which two

components depend on each other for

successful execution

• Low coupling is good

• Cohesion - the extent to which a

component has a single purpose or

function

• High cohesion is good

Coupling and cohesion (cont’d)

• What does this mean:

• modules single-minded/self-contained

functions

• address subset of requirements related to

that function

• simple interface, limited interaction ➡ bugs

are often at interfaces

• in terms of data, control, access to common

content/data

• easy to efficiently divide among team

members

• consider low coupling/high cohesion
• module should be ‘stand alone’, errors contained

as much as possible

• consider requirements
• change in requirements should minimize number

of modules affected

Information hiding

• Use of encapsulation to hide

implementation details

• Reduce inter-component coupling

thereby supporting subsequent

maintenance

https://www.geeksforgeeks.org/encapsulation-in-java/

https://www.geeksforgeeks.org/encapsulation-in-java/

Abstraction and refinement

• All design methods support the idea of

abstraction and refinement

• That is, designs are expressed at various

levels of detail with correspondences

between levels

• Various conceptual devices (abstraction

mechanisms) are used to refine a design at

one level to a lower level

• Abstractions include procedural, data and

control abstraction

Rationale and tradeoffs

• Design decisions are explicit choices of

how to trade-off two non-functional

aspects of a design (e.g., speed versus

size)

• Design decisions should be explicitly

documented

• Documentation of design decisions is

called design rationale

Design dimensions

• make architecture decision

• repository, service, layered, …

• make decomposition decision

• identify components

• determine control model

• centralized, event-driven, …

• Describe modules/subsystems

• Behavioral model

• object model

• …

UML Class Diagrams

(+ exercise)

Modeling with UML Class Diagrams

• UML class model diagrams are

commonly used to represent the

structural aspects of system design

problems

• A class diagram consists of a collection

of object classes and the relationships

among them

Classes

• A class is a distinct object type
participating in the system being built

• A common noun in English often
indicates an object type (i.e., a class)

• A class is represented by a rectangular
box, possibly partitioned into three parts
horizontally

• Class name

• Attributes

• Operations

https://medium.com/@smagid_allThings/uml-class-

diagrams-tutorial-step-by-step-520fd83b300b

https://medium.com/@smagid_allThings/uml-class-diagrams-tutorial-step-by-step-520fd83b300b

Class Features

• Classes have features (attributes +
operations)

• An attribute is a property of a class

• Attributes have types that correspond to primitive
or composite data types available on the computer

• An operation (method) is a service provided
by a class. It may take parameters and return
a value

Relationships

• Relationships exist among classes

• They are represented by lines

connecting the related classes

• A transitive verb in English may indicate

a relationship

• UML has three kinds of relationships

• Generalization (is-a, class/subclass)

• Dependency (use) ------>

• Association (consists-of)

Library Information System

• This exercise asks you to create a UML class

diagram that models the problem of

managing the information resources for a

library

• Assume that somebody else will be designing

the program from your analysis

• Include classes, their attributes and operations

and the relationships among them

• Indicate attribute types, cardinality of associations,

generalization and aggregation relationships

Library Problem Requirements
1. Each patron has one unique library card for as long as they are in the system.

2. The library needs to know at least the name, address, phone number, and library

card number for each patron.

3. In addition, at any particular point in time, the library may need to know or to

calculate the items a patron has checked out, when they are due, and any

outstanding overdue fines.

4. Children (age 12 and under) have a special restriction–they can only check out five

items at a time.

5. A patron can check out books or audio/video materials.

6. Books are checked out for three weeks, unless they are current best sellers, in which

case the limit is two weeks.

7. A/V materials may be checked out for two weeks.

8. The overdue fine is ten cents per item per day, but cannot be higher than the value

of the overdue item.

9. The library also has reference books and magazines, which can’t be checked out

10.A patron can request a book or A/V item that is not currently in.

11.A patron can renew an item once (and only once), unless there is an outstanding

request for the item, in which case the patron must return it.

