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Introduction
Suppose we  had measured two variables, length and width, and plotted them as shown below.  
Both variables have approximately the same variance and they are highly correlated with one 
another.  We could pass a vector through the long axis of the cloud of points and a second 
vector at right angles to the first, with both vectors passing through the centroid of the data.

Once we have made these vectors, we could find the coordinates of all of the data points rela-
tive to these two perpendicular vectors and replot the data, as shown here (both of these fig-
ures are from Swan and Sandilands, 1995).  

In this new reference frame, note that variance is greater along axis 1 than it is on axis 2.  Also 
note that the spatial relationships  of the points are unchanged; this process has merely ro-
tated the data.  Finally, note that our new vectors, or axes, are uncorrelated.  By performing 
such a rotation, the new axes might have particular explanations.  In this case, axis 1 could be 
regarded as a size measure, with samples on the left having both small length and width and 
samples on the right having large length and width.  Axis 2 could be regarded as a measure of 
shape, with samples at any axis 1 position (that is, of a given size) having different length to 
width ratios.  PC axes will generally not coincide exactly with any of the original variables.  

Although these relationships may seem obvious, when one is dealing with many variables, this 
process allows one to assess much more quickly any relationships among variables.  For data 
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sets with many variables, the variance of some axes may be great, whereas others may be 
small, such that they can be ignored.  This is known as reducing the dimensionality of a data 
set, such that one might start with thirty original variables, but might end with only two or 
three meaningful axes.  The formal name for this approach of rotating data such that each 
successive axis displays a decreasing among of variance is known as Principal Components 
Analysis, or PCA.  PCA produces linear combinations of the original variables to generate the 
axes, also known as principal components, or PCs.

Computation
Given a data matrix with p variables and n samples, the data are first centered on the means 
of each variable.  This will insure that the cloud of data is centered on the origin of our prin-
cipal components, but does not affect the spatial relationships of the data nor the variances 
along our variables.  The first principal components (Y1) is given by the linear combination of 
the variables X1, X2, ...,Xp

or, in matrix notation

The first principal component is calculated such that it accounts for the greatest possible 
variance in the data set.  Of course, one could make the variance of Y1 as large as possible by 
choosing large values for the weights a11, a12, ... a1p.  To prevent this, weights are calculated 
with the constraint that their sum of squares is 1.

The second principal component is calculated in the same way, with the condition that it is 
uncorrelated with (i.e., perpendicular to) the first principal component and that it accounts 
for the next highest variance.

This continues until a total of p principal components have been calculated, equal to the 
original number of variables.  At this point, the sum of the variances of all of the principal 
components will equal the sum of the variances of all of the variables, that is, all of the origi-
nal information has been explained or accounted for.  Collectively, all of these transforma-
tions of the original variables to the principal components is

Calculating these transformations or weights requires a computer for all all but the smallest 
matrices.  The rows of matrix A are called the eigenvectors of matrix Sx, the variance-
covariance matrix of the original data.  The elements of an eigenvector are the weights aij, and 

Y1 = a11X1 + a12X2 + ... + a1pXp

Y1 = aT
1 X

a2
11 + a2

12 + ... + a2
1p = 1

Y2 = a21X1 + a22X2 + ... + a2pXp

Y = AX
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are also known as loadings.  The elements in the diagonal  of matrix Sy, the variance-
covariance matrix of the principal components, are known as the eigenvalues.  Eigenvalues 
are the variance explained by each principal component, and to repeat, are constrained to 
decrease monotonically from the first principal component to the last.  These eigenvalues are 
commonly plotted on a scree plot to show the decreasing rate at which variance is explained 
by additional principal components.

   

The positions of each observation in this new coordinate system of principal components are 
called scores and are calculated as linear combinations of the original variables and the 
weights aij.  For example, the score for the rth sample on the kth principal component is calcu-
lated as 

In interpreting the principal components, it is often useful to know the correlations of the 
original variables with the principal components.  The correlation of variable Xi and principal 
component Yj is

Because reduction of dimensionality, that is, focussing on a few principal components versus 
many variables, is a goal of principal components analysis, several criteria have been proposed 
for determining how many PCs should be investigated and how many should be ignored.  One 
common criteria is to ignore principal components at the point at which the next PC offers 
little increase in the total variance explained. A second criteria is to include all those PCs up 
to a predetermined total percent variance explained, such as 90%.  A third standard is to ig-
nore components whose variance explained is less than 1 when a correlation matrix is used or 
less than the average variance explained when a covariance matrix is used, with the idea being 
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that such a PC  offers less than one variable’s worth of information.  A fourth standard is to 
ignore the last PCs whose variance explained is all roughly equal. 

Principal components are equivalent to major axis regressions.  As such, principal compo-
nents analysis is subject to the same restrictions as regression, in particular multivariate nor-
mality.  The distributions of each variable should be checked for normality and transforms 
used where necessary to correct high degrees of skewness in particular.  Outliers should be 
removed from the data set as they can dominate the results of a principal components analy-
sis.

PCA in R
1) Do an R-mode PCA using prcomp() in R.  To do a Q-mode PCA, the data set should be 
transposed before proceeding.  R-mode PCA examines the correlations or covariances among 
variables, whereas Q-mode focusses on the correlations or covariances among samples.  

> mydata <- read.table(file="mydata.txt", header=TRUE, 
row.names=1, sep=",")

> mydata.pca <- prcomp(mydata, retx=TRUE, center=TRUE, 
scale.=TRUE) 
# variable means set to zero, and variances set to one
# sample scores stored in mydata.pca$x
# loadings stored in mydata.pca$rotation
# singular values (square roots of eigenvalues) stored 
#  in mydata.pca$sdev
# variable means stored in mydata.pca$center
# variable standard deviations stored in mydata.pca$scale

> sd <- mydata.pca$sdev
> loadings <- mydata.pca$rotation
> rownames(loadings) <- colnames(mydata)
> scores <- mydata.pca$x

2) Do a PCA longhand in R:

> R <- cor(mydata) 
# calculate a correlation matrix

> myEig <- eigen(R) 
# find the eigenvalues and eigenvectors of correlation matrix
# eigenvalues stored in myEig$values
# eigenvectors (loadings) stored in myEig$vectors

> sdLONG <- sqrt(myEig$values)
# calculating singular values from eigenvalues

> loadingsLONG <- myEig$vectors
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> rownames(loadingsLONG) <- colnames(mydata)
# saving as loadings, and setting rownames

> standardize <- function(x) {(x - mean(x))/sd(x)}
> X <- apply(mydata, MARGIN=2, FUN=standardize) 
# transforming data to zero mean and unit variance

> scoresLONG <- X %*% loadingsLONG
# calculating scores from eigenanalysis results

3) Compare results from the two analyses to demonstrate equivalency.  Maximum differences 
should be close to zero if the two approaches are equivalent.  

> range(sd - sdLONG) 
> range(loadings - loadingsLONG)
> range(scores - scoresLONG)

4) Do a distance biplot (see Legendre & Legendre, 1998, p. 403)

> quartz(height=7, width=7)
> plot(scores[,1], scores[,2], xlab="PCA 1", ylab="PCA 2", 
   type="n", xlim=c(min(scores[,1:2]), max(scores[,1:2])), 
   ylim=c(min(scores[,1:2]), max(scores[,1:2])))
> arrows(0,0,loadings[,1]*10,loadings[,2]*10, length=0.1, 
   angle=20, col="red")
# note that this scaling factor of 10 may need to be changed,
# depending on the data set

> text(loadings[,1]*10*1.2,loadings[,2]*10*1.2, 
   rownames(loadings), col="red", cex=0.7)
# 1.2 scaling insures that labels are plotted just beyond 
# the arrows

> text(scores[,1],scores[,2], rownames(scores), col="blue", 
   cex=0.7)
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> quartz(height=7, width=7)
> biplot(scores[,1:2], loadings[,1:2], xlab=rownames(scores), 
   ylab=rownames(loadings), cex=0.7)
# using built-in biplot function

5) Do a correlation biplot (see Legendre & Legendre, 1998, p. 404)

> quartz(height=7, width=7)
> plot(scores[,1]/sd[1], scores[,2]/sd[2], xlab="PCA 1", 
   ylab="PCA 2", type="n")
> arrows(0,0,loadings[,1]*sd[1],loadings[,2]*sd[2], 
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   length=0.1, angle=20, col="red")
> text(loadings[,1]*sd[1]*1.2,loadings[,2]*sd[2]*1.2, 
   rownames(loadings), col="red", cex=0.7)
> text(scores[,1]/sd[1],scores[,2]/sd[2], rownames(scores), 
   col="blue", cex=0.7)
# 1.2 scaling insures that labels are plotted just beyond 
# the arrows

> quartz(height=7, width=7)
> biplot(mydata.pca)
# using built-in biplot function of prcomp(); note that only 
# the top and right axes match the coordinates of the points; 
# also note that still doesn't quite replicate the correlation 
# biplot.  It’s unclear what this function really does.
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6) Calculate the correlation coefficients between variables and principal components

> correlations <- t(loadings)*sd
# find the correlation of all the variables with all PC's

> correlations <- cor(scores,mydata)
# another way to find these correlations

7) Plot a scree graph

> quartz(height=7, width=7)
> plot(mydata.pca)
# using built-in function for prcomp; may not show all PCs
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> quartz(height=7, width=7)
> plot(log(sd^2), xlab="principle component", 
   ylab="log(variance)", type="b", pch=16)
# using a general plot, with variance on a log scale

8) Find variance along each principal component and the eigenvalues

> newsd <- sd(scores)
> max (sd - newsd)
# finds maximum difference between the standard deviation form 
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# prcomp and the standard deviation calculated longhand; 
# should be close to zero

> eigenvalues <- sd^2
> sum(eigenvalues)  
# should equal number of variables

> length(mydata)  
# number of variables

9) Save loadings, scores, and singular values to files

> write.table(loadings, file="loadings.txt")
> write.table(scores, file="scores.txt")
> write.table(sd, file="sd.txt")
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