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So far, we have not used any notions, or notation, that goes beyond basic
algebra and calculus (and probability). This has forced us to do a fair amount
of book-keeping, as it were by hand. This is just about tolerable for the simple
linear model, with one predictor variable. It will get intolerable if we have
multiple predictor variables. Fortunately, a little application of linear algebra
will let us abstract away from a lot of the book-keeping details, and make
multiple linear regression hardly more complicated than the simple version1.

These notes will not remind you of how matrix algebra works. However, they
will review some results about calculus with matrices, and about expectations
and variances with vectors and matrices.

Throughout, bold-faced letters will denote matrices, as a as opposed to a
scalar a.

1 Least Squares in Matrix Form

Our data consists of n paired observations of the predictor variable X and the
response variable Y , i.e., (x1, y1), . . . (xn, yn). We wish to fit the model

Y = β0 + β1X + ε (1)

where E [ε|X = x] = 0, Var [ε|X = x] = σ2, and ε is uncorrelated across mea-
surements2.

1.1 The Basic Matrices

Group all of the observations of the response into a single column (n×1) matrix
y,

y =


y1
y2
...
yn

 (2)

Similarly, we group both the coefficients into a single vector (i.e., a 2 × 1
matrix)

β =

[
β0
β1

]
(3)

We’d also like to group the observations of the predictor variable together,
but we need something which looks a little unusual at first:

x =


1 x1
1 x2
...

...
1 xn

 (4)

1Historically, linear models with multiple predictors evolved before the use of matrix alge-
bra for regression. You may imagine the resulting drudgery.

2When I need to also assume that ε is Gaussian, and strengthen “uncorrelated” to “inde-
pendent”, I’ll say so.
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3 1.2 Mean Squared Error

This is an n×2 matrix, where the first column is always 1, and the second column
contains the actual observations of X. We have this apparently redundant first
column because of what it does for us when we multiply x by β:

xβ =


β0 + β1x1
β0 + β1x2

...
β0 + β1xn

 (5)

That is, xβ is the n× 1 matrix which contains the point predictions.
The matrix x is sometimes called the design matrix.

1.2 Mean Squared Error

At each data point, using the coefficients β results in some error of prediction,
so we have n prediction errors. These form a vector:

e(β) = y − xβ (6)

(You can check that this subtracts an n× 1 matrix from an n× 1 matrix.)
When we derived the least squares estimator, we used the mean squared

error,

MSE(β) =
1

n

n∑
i=1

e2i (β) (7)

How might we express this in terms of our matrices? I claim that the correct
form is

MSE(β) =
1

n
eTe (8)

To see this, look at what the matrix multiplication really involves:

[e1e2 . . . en]


e1
e2
...
en

 (9)

This, clearly equals
∑
i e

2
i , so the MSE has the claimed form.

Let us expand this a little for further use.

MSE(β) =
1

n
eTe (10)

=
1

n
(y − xβ)T (y − xβ) (11)

=
1

n
(yT − βTxT )(y − xβ) (12)

=
1

n

(
yTy − yTxβ − βTxTy + βTxTxβ

)
(13)
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4 1.3 Minimizing the MSE

Notice that (yTxβ)T = βTxTy. Further notice that this is a 1 × 1 matrix, so
yTxβ = βTxTy. Thus

MSE(β) =
1

n

(
yTy − 2βTxTy + βTxTxβ

)
(14)

1.3 Minimizing the MSE

First, we find the gradient of the MSE with respect to β:

∇MSE(β =
1

n

(
∇yTy − 2∇βTxTy +∇βTxTxβ

)
(15)

=
1

n

(
0− 2xTy + 2xTxβ

)
(16)

=
2

n

(
xTxβ − xTy

)
(17)

We now set this to zero at the optimum, β̂:

xTxβ̂ − xTy = 0 (18)

This equation, for the two-dimensional vector β̂, corresponds to our pair of nor-
mal or estimating equations for β̂0 and β̂1. Thus, it, too, is called an estimating
equation.

Solving,
β̂ = (xTx)−1xTy (19)

That is, we’ve got one matrix equation which gives us both coefficient estimates.
If this is right, the equation we’ve got above should in fact reproduce the

least-squares estimates we’ve already derived, which are of course

β̂1 =
cXY
s2X

=
xy − x̄ȳ
x2 − x̄2

(20)

and
β̂0 = y − β̂1x (21)

Let’s see if that’s right.
As a first step, let’s introduce normalizing factors of 1/n into both the matrix

products:
β̂ = (n−1xTx)−1(n−1xTy) (22)

Now let’s look at the two factors in parentheses separately, from right to left.

1

n
xTy =

1

n

[
1 1 . . . 1
x1 x2 . . . xn

]
y1
y2
...
yn

 (23)

=
1

n

[ ∑
i yi∑
i xiyi

]
(24)

=

[
y
xy

]
(25)
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Similarly for the other factor:

1

n
xTx =

1

n

[
n

∑
i xi∑

i xi
∑
i x

2
i

]
(26)

=

[
1 x

x x2

]
(27)

Now we need to take the inverse:(
1

n
xTx

)−1

=
1

x2 − x̄2

[
x2 −x
−x 1

]
(28)

=
1

s2X

[
x2 −x
−x 1

]
(29)

Let’s multiply together the pieces.

(xTx)−1xTy =
1

s2X

[
x2 −x
−x 1

] [
y
xy

]
(30)

=
1

s2X

[
x2y − xxy
−xy + xy

]
(31)

=
1

s2X

[
(s2X + x̄2)y − x(cXY + x̄ȳ)

cXY

]
(32)

=
1

s2X

[
s2xy + x̄2y − xcXY − x2ȳ

cXY

]
(33)

=

[
y − cXY

s2X
x

cXY

s2X

]
(34)

which is what it should be.
So: n−1xTy is keeping track of y and xy, and n−1xTx keeps track of x

and x2. The matrix inversion and multiplication then handles all the book-
keeping to put these pieces together to get the appropriate (sample) variances,
covariance, and intercepts. We don’t have to remember that any more; we can
just remember the one matrix equation, and then trust the linear algebra to
take care of the details.

2 Fitted Values and Residuals

Remember that when the coefficient vector is β, the point predictions for each

data point are xβ. Thus the vector of fitted values, m̂(x), or m̂ for short, is

m̂ = xβ̂ (35)

Using our equation for β̂,

m̂ = x(xTx)−1xTy (36)
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Notice that the fitted values are linear in y. The matrix

H ≡ x(xTx)−1xT (37)

does not depend on y at all, but does control the fitted values:

m̂ = Hy (38)

If we repeat our experiment (survey, observation. . . ) many times at the same
x, we get different y every time. But H does not change. The properties of
the fitted values are thus largely determined by the properties of H. It thus
deserves a name; it’s usually called the hat matrix, for obvious reasons, or, if
we want to sound more respectable, the influence matrix.

Let’s look at some of the properties of the hat matrix.

1. Influence Since H is not a function of y, we can easily verify that ∂m̂i/∂yj =
Hij . Thus, Hij is the rate at which the ith fitted value changes as we vary
the jth observation, the “influence” that observation has on that fitted
value.

2. Symmetry It’s easy to see that HT = H.

3. Idempotency A square matrix a is called idempotent3 when a2 = a
(and so ak = a for any higher power k). Again, by writing out the
multiplication, H2 = H, so it’s idempotent.

Idemopotency, Projection, Geometry Idempotency seems like the most
obscure of these properties, but it’s actually one of the more important. y and
m̂ are n-dimensional vectors. If we project a vector u on to the line in the
direction of the length-one vector v, we get

vvTu (39)

(Check the dimensions: u and v are both n × 1, so vT is 1 × n, and vTu is
1× 1.) If we group the first two terms together, like so,

(vvT )u (40)

where vvT is the n×n project matrix or projection operator for that line.
Since v is a unit vector, vTv = 1, and

(vvT )(vvT ) = vvT (41)

so the projection operator for the line is idempotent. The geometric meaning of
idempotency here is that once we’ve projected u on to the line, projecting its
image on to the same line doesn’t change anything.

Extending this same reasoning, for any linear subspace of the n-dimensional
space, there is always some n × n matrix which projects vectors in arbitrary

3From the Latin idem, “same”, and potens, “power”.
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7 2.1 Residuals

position down into the subspace, and this projection matrix is always idempo-
tent. It is a bit more convoluted to prove that any idempotent matrix is the
projection matrix for some subspace, but that’s also true. We will see later how
to read off the dimension of the subspace from the properties of its projection
matrix.

2.1 Residuals

The vector of residuals, e, is just

e ≡ y − xβ̂ (42)

Using the hat matrix,
e = y −Hy = (I−H)y (43)

Here are some properties of I−H:

1. Influence ∂ei/∂yj = (I−H)ij .

2. Symmetry (I−H)T = I−H.

3. Idempotency (I−H)2 = (I−H)(I−H) = I−H−H + H2. But, since H
is idempotent, H2 = H, and thus (I−H)2 = (I−H).

Thus,

MSE(β̂) =
1

n
yT (I−H)T (I−H)y (44)

simplifies to

MSE(β̂) =
1

n
yT (I−H)y (45)

2.2 Expectations and Covariances

We can of course consider the vector of random variables Y. By our modeling
assumptions,

Y = xβ + ε (46)

where ε is an n×1 matrix of random variables, with mean vector 0, and variance-
covariance matrix σ2I. What can we deduce from this?

First, the expectation of the fitted values:

E [HY] = HE [Y] (47)

= Hxβ + HE [ε] (48)

= x(xTx)−1xTxβ + 0 (49)

= xβ (50)

which is as it should be, since the fitted values are unbiased.
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Next, the variance-covariance of the fitted values:

Var [HY] = Var [H(xβ + ε)] (51)

= Var [Hε] (52)

= HVar [ε] HT (53)

= σ2HIH (54)

= σ2H (55)

using, again, the symmetry and idempotency of H.
Similarly, the expected residual vector is zero:

E [e] = (I−H)(xβ + E [ε]) = xβ − xβ = 0 (56)

The variance-covariance matrix of the residuals:

Var [e] = Var [(I−H)(xβ + ε)] (57)

= Var [(I−H)ε] (58)

= (I−H)Var [ε] (I−H))T (59)

= σ2(I−H)(I−H)T (60)

= σ2(I−H) (61)

Thus, the variance of each residual is not quite σ2, nor (unless H is diagonal)
are the residuals exactly uncorrelated with each other.

Finally, the expected MSE is

E
[

1

n
eTe

]
(62)

which is
1

n
E
[
εT (I−H)ε

]
(63)

We know (because we proved it in the exam) that this must be (n − 2)σ2/n;
we’ll see next time how to show this.

3 Sampling Distribution of Estimators

Let’s now “turn on” the Gaussian-noise assumption, so the noise terms εi all
have the distribution N(0, σ2), and are independent of each other and of X.
The vector of all n noise terms, ε, is an n × 1 matrix. Its distribution is a
multivariate Gaussian or multivariate normal4, with mean vector 0, and

4Some people write this distribution as MVN , and others also as N . I will stick to the
former.
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variance-covariance matrix σ2I. We may use this to get the sampling distribu-
tion of the estimator β̂:

β̂ = (xTx)−1xTY (64)

= (xTx)−1xT (xβ + ε) (65)

= (xTx)−1xTxβ + (xTx)−1xT ε (66)

= β + (xTx)−1xT ε (67)

Since ε is Gaussian and is being multiplied by a non-random matrix, (xTx)−1xT ε
is also Gaussian. Its mean vector is

E
[
(xTx)−1xT ε

]
= (xTx)−1xTE [ε] = 0 (68)

while its variance matrix is

Var
[
(xTx)−1xT ε

]
= (xTx)−1xTVar [ε]

(
(xTx)−1xT

)T
(69)

= (xTx)−1xTσ2Ix(xTx)−1 (70)

= σ2(xTx)−1xTx(xTx)−1 (71)

= σ2(xTx)−1 (72)

Since Var
[
β̂
]

= Var
[
(xTx)−1xT ε

]
(why?), we conclude that

β̂ ∼MVN(β, σ2(xTx)−1) (73)

Re-writing slightly,

β̂ ∼MVN(β,
σ2

n
(n−1xTx)−1) (74)

will make it easier to prove to yourself that, according to this, β̂0 and β̂1 are

both unbiased (which we know is right), that Var
[
β̂1

]
= σ2

n s
2
X (which we know

is right) and that Var
[
β̂0

]
= σ2

n (1 + x̄2/s2X) (which we know is right). This will

also give us Cov
[

ˆbeta0, β̂1

]
, which otherwise would be tedious to calculate.

I will leave you to show, in a similar way, that the fitted values Hy are
multivariate Gaussian, as are the residuals e, and to find both their mean vectors
and their variance matrices.

4 Derivatives with Respect to Vectors

This is a brief review, not intended as a full course in vector calculus.
Consider some scalar function of a vector, say f(x), where x is represented

as a p×1 matrix. (Here x is just being used as a place-holder or generic variable;
it’s not necessarily the design matrix of a regression.) We would like to think
about the derivatives of f with respect to x.
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Derivatives are rates of change; they tell us how rapidly the function changes
in response to minute changes in its arguments. Since x is a p × 1 matrix, we
could also write

f(x) = f(x1, x1, xp) (75)

This makes it clear that f will have a partial derivative with respect to each
component of x. How much does f change when we vary the components? We
can find this out by using a Taylor expansion. If we pick some base value of the
matrix x0 and expand around it,

f(x) ≈ f(x0) +

p∑
i=1

(x− x0)i
∂f

∂xi

∣∣∣∣
x0

(76)

= f(x0) + (x− x0)T∇f(x0) (77)

where we define the gradient, ∇f , to be the vector of partial derivatives,

∇f ≡


∂f
∂x1
∂f
∂x2

...
∂f
∂xp

 (78)

Notice that this defines∇f to be a one-column matrix, just as x was taken to
be. You may sometimes encounter people who want it to be a one-row matrix;
it comes to the same thing, but you may have to track a lot of transposes to
make use of their math.

All of the properties of the gradient can be proved using those of partial
derivatives. Here are some basic ones we’ll need.

1. Linearity
∇ (af(x) + bg(x)) = a∇f(x) + b∇g(x) (79)

Proof: Directly from the linearity of partial derivatives.

2. Linear forms If f(x) = xTa, with a not a function of x, then

∇(xTa) = a (80)

Proof: f(x) =
∑
i xiai, so ∂f/∂xi = ai. Notice that a was already a

p×1 matrix, so we don’t have to transpose anything to get the derivative.

3. Linear forms the other way If f(x) = bx, with b not a function of x, then

∇(bx) = bT (81)

Proof: Once again, ∂f/∂xi = bi, but now remember that b was a 1× p
matrix, and ∇f is p× 1, so we need to transpose.
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11 4.1 Second Derivatives

4. Quadratic forms Let c be a p× p matrix which is not a function of x, and
consider the quadratic form xT cx. (You can check that this is scalar.)
The gradient is

∇(xT cx) = (c + cT )x (82)

Proof: First, write out the matrix multiplications as explicit sums:

xT cx =

p∑
j=1

xj

p∑
k=1

cjkxk =

p∑
j=1

p∑
k=1

xjcjkxk (83)

Now take the derivative with respect to xi.

∂f

∂xi
=

p∑
j=1

p∑
k=1

∂xjcjkxk
∂xi

(84)

If j = k = i, the term in the inner sum is 2ciixi. If j = i but k 6= i, the
term in the inner sum is cikxk. If j 6= i but k = i, we get xjcji. Finally, if
j 6= i and k 6= i, we get zero. The j = i terms add up to (cx)i. The k = i
terms add up to (cTx)i. (This splits the 2ciixi evenly between them.)
Thus

∂f

∂xi
= ((c + cTx)i (85)

and
∇f = (c + cT )x (86)

(You can, and should, double check that this has the right dimensions.)

5. Symmetric quadratic forms If c = cT , then

∇xT cx = 2cx (87)

4.1 Second Derivatives

The p × p matrix of second partial derivatives is called the Hessian. I won’t
step through its properties, except to note that they, too, follow from the basic
rules for partial derivatives.

4.2 Maxima and Minima

We need all the partial derivatives to be equal to zero at a minimum or max-
imum. This means that the gradient must be zero there. At a minimum, the
Hessian must be positive-definite (so that moves away from the minimum always
increase the function); at a maximum, the Hessian must be negative definite (so
moves away always decrease the function). If the Hessian is neither positive
nor negative definite, the point is neither a minimum nor a maximum, but a
“saddle” (since moving in some directions increases the function but moving in
others decreases it, as though one were at the center of a horse’s saddle).
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5 Expectations and Variances with Vectors and
Matrices

If we have p random variables, Z1, Z2, . . . Zp, we can grow them into a random
vector Z = [Z1Z2 . . . Zp]

T . (That is, the random vector is an n × 1 matrix of
random variables.)

This has an expected value:

E [Z] ≡
∫

zp(z)dz (88)

and a little thought shows

E [Z] =


E [Z1]
E [Z2]

...
E [Zp]

 (89)

Since expectations of random scalars are linear, so are expectations of random
vectors: when a and b are non-random scalars,

E [aZ + bW] = aE [Z] + bE [W] (90)

If a is a non-random matrix,

E [aZ] = aE [Z] (91)

Every coordinate of a random vector has some covariance with every other
coordinate. The variance-covariance matrix of Z is the p×p matrix which stores
these:

Var [Z] ≡


Var [Z1] Cov [Z1, Z2] . . . Cov [Z1, Zp]

Cov [Z2, Z1] Var [Z2] . . . Cov [Z2, Zp]
...

...
...

...
Cov [Zp, Z1] Cov [Zp, Z2] . . . Var [Zp]

 (92)

This inherits properties of ordinary variances and covariances. Just Var [Z] =
E
[
Z2
]
− (E [Z])2,

Var [Z] = E
[
ZZT

]
− E [Z] (E [Z])T (93)

For a non-random vector a and a non-random scalar b,

Var [a + bZ] = b2Var [Z] (94)

For a non-random matrix c,

Var [cZ] = cVar [Z] cT (95)
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(Check that the dimensions all conform here: if c is q × p, Var [cZ] should be
q × q, and so is the right-hand side.)

For a quadratic form, ZT cZ, with non-random c, the expectation value is

E
[
ZT cZ

]
= E [Z]

T
cE [Z] + tr cVar [Z] (96)

where tr is of course the trace of a matrix, the sum of its diagonal entries. To
see this, notice that

ZT cZ = tr ZT cZ (97)

because it’s a 1 × 1 matrix. But the trace of a matrix product doesn’t change
when we cyclic permute the matrices, so

ZT cZ = tr cZZT (98)

Therefore

E
[
ZT cZ

]
= E

[
tr cZZT

]
(99)

= trE
[
cZZT

]
(100)

= tr cE
[
ZZT

]
(101)

= tr c(Var [Z] + E [Z]E [Z]
T

) (102)

= tr cVar [Z] + tr cE [Z]E [Z]
T

) (103)

= tr cVar [Z] + trE [Z]
T

cE [Z] (104)

= tr cVar [Z] + E [Z]
T

cE [Z] (105)

using the fact that tr is a linear operation so it commutes with taking expec-
tations; the decomposition of Var [Z]; the cyclic permutation trick again; and
finally dropping tr from a scalar.

Unfortunately, there is generally no simple formula for the variance of a
quadratic form, unless the random vector is Gaussian.

6 Further Reading

Linear algebra is a pre-requisite for this class; I strongly urge you to go back to
your textbook and notes for review, if any of this is rusty. If you desire additional
resources, I recommend Axler (1996) as a concise but thorough course. Petersen
and Pedersen (2012), while not an introduction or even really a review, is an
extremely handy compendium of matrix, and matrix-calculus, identities.
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