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Linear Algebra




Some logistics

» Creating your project’s team.

« Office hours are started.
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Why Linear Algebra?

¢ Linear algebra provides a way of compactly representing and

0 i ets of lin ations ﬁ@?”\x%
M?,xz SN X ~
Qcan be written in the formof Ax = b 5

—13
Z) b=
3 matrix withn rows andd columns, where

s (A€ denot f

elements bii gfo real numbers.

~ X
denotes a vector with d real entries. In this case, R% is a
column vector (d rows 1 column), but R% can also be thought of
as a matrix with 1 row and d columns in other situations.




Linear Algebra Basics

Transpose of a matrix results from flipping the rows and
columns. Given A € R* *¢, transpose is AT € R% %™

For each element of the matrix, the transpose can be written

Twing properties of the transposes are easily verified
‘zﬂb = A

e (AB)'= B'TAT
e (A+B)'= A" +BT

\
A square matrix A € H@jis symmetricif A = ATanditis
anti-symmetricif A = — A" . Thus each matrix can be written

as a sum of symmetric and anti-symmetric matrices.
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Norms

» Norm of a vectos informally a measure of the “length”
8%

of a vector < IR

» More formally, a norm is any function f :(R%Y— R that satisfies
o For all x € RY, f(x) 2 0 (non-negativity)
¢ f(x) =0is and only if x = 0 (definiteness)

o Forx € R%,te R, f(tx) =@(x) (homogeneity)
e Forallx,y € R% flx+y)<fix) +fly) (triangle inequality)

2 2 ? 2
\x)), = v+

» Comman norms used in machine learning are
=[] i \
o ”JC”2 — \/ZgzleZ @ ‘11{_?/'21_32 “X “,2 -




Norms y- 14 \/
x=C1,-3,2]

o £, norm
lixlty = s )31 Jo] = 6

g ||JC||1 Zr, 1|x I

o £, norm
o |lx]le = max;|x;]

» All no d so far are examples of the family of £,
rms, which are parameterized by a real numberp 2 1

o [lxll, = izalxlP) 7
//

» Norms can be defined for matrices, such as the Frobenius
norm.

o lAlly = [SE,39,4,2= Jer(@TA)

10



Vector Norm Examples

12 + 13
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’ The identity matrix, denoted by | €

RdXd

Special Matrices

IS @ square matrix
. o‘w - -
¥ with ones on the diagonal and zeros everywher

7 al X L O
Q O T Z 7,0 _{ __[ a )
Q°Io‘><.] ad-a [ordd A (510

® A diagonal matrix is a matrix where all non-diagonal 'ELEMENTS'
are 0. This is typically denoted as D = diag (d{, d>, ...,dg)

o Two vectorsx,y €
matrix U € R4 X ¢ {5 Orthonormalj

ogonal if x.y =0. A square
all its cq(lumns are orthogonal

- b
to each other and arerrma ized 10 0| Xi¥a =0
| V= [0't'a| x . y
Uhl""aﬁ 0'\6)! 1 | — 42
L 24 J
o It follows from orthogonality and normality that———\ -1,
(_ T VU =
o UTU=1=UUT s the i ; . UU1=
S tne inverse oj a unitary -
® ||Ux||2 — ||x||2 matrix equal to its transpose?LUU = I

e
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Multiplications

o The proof two matrices A € R *@and B € RO*7 s given
by C € I"@ where C;; = ZﬁﬂAmBRj

» Given two vectors x, y € R?, the term xy! (also x - y) is called
the inner product or dot product of the vectors, and is a real

number given byZ . For example,
xyt =[xy X X3][V2| =21 xyi e R
1¥3 _y?’

3 x4

» Given two vectorsx € R,y € R", the termx”y is called the
outer product of the vectors: x @ y

Is Dot Product a linear ~——> Yes
operation?



Multiplications

. X1 X1Y1 X1Y2 X1YV3
xQy=xy =|X%|[Y1 Y2 Y3|= [X2V1 X2Y2 X3Y3
X3 X3Y1 X3Y2 X3Y3l

» The dot product also has a geometrical interpretation, for
vectors in X,y € R? with angle & between them

which leads to use of dot product for testing orthogonality,
getting the Euclidean norm of a vector, and scalar projections.



Inner Product Properties

The inner product is a measure of correlation between two vectors,
scaled by the norms of the vectors




Inner Product Properties

The inner product is a measure of correlation between two vectors,
scaled by the norms of the vectors




Inner Product Properties

The inner product is a measure of correlation between two vectors,

scaled by the norms of the vectors

o

If two variables are uncorrelated, they are orthogonal and if two variables
are orthogonal, they are uncorrelated. (Can | really say that?)
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Linear Independence and Matrix Rank

» Aset of vectors {x;, x,,...,x,} € R? are said to be (linearly)
independent if no vector can be represented as a linear

combination of the remaining vectors. That is if

- 1 A,
E——f—’ - & wide metvik 2 4
xd — aixi Tall maty)y

> 6

i=1 -
for some scalar values a4, @,, ... € R then we say that the vectors
are linearly dependent; otherwise the vectors are linearly

independent
Lq ‘3x3k

» The column rank of a matrix A € R"** ¢ is the size of the
largest subset of columns of A that constitute a linearly

independent set. Row rank of a matrix is defined similarly for
rows of a matrix.

It is a full rank Iif the rank is min{n,d}. This is the maximum rank.




Matrix Rank: Examples

What are the ranks for the following matrices? How about an
identity matrix

172 37 Rt
A =
2 4 6
ro ﬁ\ 102
2 1 O 1 Rank= 2= Ful rank
B=(2120
(b 2’( 4




Matrix Inverse

o The inverse of a[square matrix\A € R**%js denoted A~ and
is the unique matrix such that A~ 14 =1= AA~1

O —

» For some square matrices A~! may not exist, and we say that A
is singular or non-invertible. In order for A to have an inverse,
A must be full rank.

» For non-square matrices the inverse, denoted by A% ,is given

by At = (ATA)"1AT called the pseudo inverse AA- I
QMJ Al\. (QTA) (HTA)—‘,._J 1 Tall Airrenk
XN o‘\(ol —~ HTA 4 T _‘ T AHT.—
':Am.,.,? A A=@A)A o
- {q = —
A wide Foll Runk

-1

T‘F*L

= A

Y (S
L 1
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Matrix Trace

» The trace of a matrix A € R* X% denoted as tr(A), is the sum
of the diagonal elements in the matrix

tr(A) = 2?=1 Aj;

» The trace has the following properties
o For A€ R** % tr(A) = trAT
o ForA,BER**% tr(A + B) = tr(4) + tr(B)
o ForAe RE*4d te R, tr(td) = t - tr(4)

e For A, B, C such that ABC is a square matrix tr(ABC) =
tr(BCA) = tr(CAB)

» The trace of a matrix helps us easily compute norms and
eigenvalues of matrices as we will see later



Matrix Determinant

Definition (Determinant)

The determinant of a square matrix A, denoted by |A|, is defined as

d
det (A) = Y (=1)" ay My

j=1

where M;; is determinant of matrix A without the row ¢ and column j.

) /
Al =0 % k ///—;/{/

ForaZmeatrixAz(




Properties of Matrix Determinant

o |A| = 'AT
o |[AB| = |A||B]

o |A| =0 if and only if A is not invertible
o If Ais invertible, then |A71| = ﬁ
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Eigenvalues and Eigenvectors

» Given a square matrix A € R4 *dwe say that A € Cis an o
. d . . .
. eugegvalue of Aand x € C is an eigenvector if !
{ 3 > ’(/ 1) X"
I_z 1 ¢ | , x Ax,.-.—. x5 x #+0
2] ) hd™s 1 -
ve \ A da 44 o‘x‘l Qigonvet of

» Intuitively this means that upon multiplying the matrix A with a
vector x, we get the same vector, but scaled by a parameter 4

¢ Geometrically, we are transforming the matrix A from its
original orthonormal basis/co-ordinates to a new se
orthonormal ba5|§qx with magnl)léude as A X

ax = X )\ ( R

J Id L\j Jdd




Computing Eigenvalues and Eigenvectors

» We can rewrite the original equation in the following manner
Ax = Ax, |x ;tg
= (A—A) x =0, x #+ 0

o This is only possible if (A — Al) issingular, thatis |(A—Al) | =
0. —

(A-SDx=0  (A-59) (A-3Dx=0 (Dx=0

» Thus, eigenvalues and eigenvectors can be computed.
¢ Compute the determinantof A — Al.
» This results in a polynomial of degree d.
¢ Find the roots of the polynomial by equating it to zero.
o The d roots are the d eigenvalues of A. They make A — Al singular.

o For each eigenvalue 4, solve (A — Al) x to find an eigenvector x



Eigenvalues

1 2
A=

Determine eigenvectors: AX = Ax
X, +2x, = Ax,
3x,—4x, = Ax,

Eigenvector for A, = -

6x, +2x,=0
3x,+x,=0

Eigenvector for A, = 2
— X +2%, =0

3x,—6x,=0

Slide credit: Shubham Kumbhar

3 -4

= X, =

Eigenvalue Example

|A-51] =

(I-A)x, +2x, =0
—-(4+A)x, =0

X, =

[1

3

—0.3162
- 0.9487 |

(0.8944 |
10.4472

1

,30\._._.
o 5

—

1 Y
3

o)

(1-5)(-4-5) -6=0 > 21- 5 La= 2

or X, =

or X, =

( X+ 2¥2= - HX1

CXz

S

L3’(\-— L‘XZ

Ax= -sxé, 3 __JI \-——SL,]
“[]




Matrix Eigen Decomposition

» All the eigenvectors can be written together as AX = XA
where the columns of X are the eigenvectors of 4, and A is a
diagonal matrix whose elements are eigenvalues of A

» If the eigenvectors of A are invertible, then A = XAX ™!

» Ther roperties of eigenvalues and eigenvectors
TT(A) — ch'lzl /11' O O] ( >1:O
>

s |A| — i=1/1i (A|=0 '( 0 2:0
¢ Rank of A is the number of non-zero eigenvalues of A

o If A'is non-singular then 1/4; are the eigenvalues of A1
¢ The eigenvalues of a diagonal matrix are the diagonal elements

of the matrix itself! 1 OI
[0



Can a matrix have the same eigenvalues?

t 0
Lo 1

Are the eigenvectors of a matrix orthogonal

against each other?
M Y2

-
R

\‘P Q Is Symmesrica) 5 Then Yo

>
Y

X Yz
l (
If two vectors are linearly independent, (e X, X2 £0
does it mean they are orthogonal against 2 Y
each other?

X Y2

T 07 xux =0
o 1)
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Singular Value Decomposition
> nawp) pp. pinv (%)
n: instances "P -
?nxd d: dimensions np.swd = U, LY
X is a centered matrix

U,v, = unitary matrix > UxU" =1
@: uzv?’ Ynxg — diagonal matrix
Vixg — unitary matrix -V x V1 =1

Upg oo oo e Up [ [ 0 0 Vig oo e e Vg
: . . 0 *. 0 . " .
X=|: Xl 0 0 D 44l
: 0 0 0 ; ;
| Upg U] [ O 0 0 | [Vaa o - o Vg
U ) vt



— 1 . T AT
Xnd  Xgn B T = i
Covariance matrix: (Vv

Xtx |

Cdxd F:.— Xm
2 P

C =V Zy' o CVs vi i@b’/‘—"v TJ

C
eis“‘"m 2?

X = Uz@i )

T T 2y T
—— Ve vsty
n n




C = =V —VT
n n

32 32

CV=V—VTV=V—

n n

Remember: AX — XA

b : : .
A; = = = The eigenvalues of covariance matrix

n

A;: Eigenvalue of C or covariance matrix

;. Singular value of X matrix

So, we can directly calculate eigenvalue of a covariance matrix by
having the singular value of matrix X directly



Geometric Meaning of SVD

Image Credit: Kevin Binz
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