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Some logistics

• Creating your project’s team.

• Office hours are started. 



Outline

• Linear Algebra Basics

• Norms

• Multiplications

• Matrix Inversion

• Trace and Determinant

• Eigen Values and Eigen Vectors

• Singular Value Decomposition

• Matrix Calculus



Why Linear Algebra?
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𝑥 ∈ 𝑅𝑑 denotes a vector with d real entries. In this case, 𝑅𝑑 is a 
column vector (d rows 1 column), but 𝑅𝑑 can also be thought of 
as a matrix with 1 row and d columns in other situations.



Linear Algebra Basics

𝑛 × 𝑑 𝑑 × 𝑛

𝑑 × 𝑑





Outline

• Linear Algebra Basics

• Norms

• Multiplications

• Matrix Inversion

• Trace and Determinant

• Eigen Values and Eigen Vectors

• Singular Value Decomposition



Norms
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Norms

10

𝑑

𝑑𝑛



Vector Norm Examples



Special Matrices
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Orthonormal

Is the inverse of a unitary 
matrix equal to its transpose?

A diagonal matrix is a matrix where all non-diagonal 'ELEMENTS' 
are 0. This is typically denoted as 𝐷 = 𝑑𝑖𝑎𝑔 (𝑑1, 𝑑2, … , 𝑑𝑑)
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Multiplications
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Is Dot Product a linear 
operation?



Multiplications

T
𝑥 ⊗ 𝑦 =



Inner Product Properties

?



Inner Product Properties
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Inner Product Properties

If two variables are uncorrelated, they are orthogonal and if two variables 
are orthogonal, they are uncorrelated. (Can I really say that?)

?
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• Linear Algebra Basics

• Norms

• Multiplications

• Matrix Inversion

• Trace and Determinant

• Eigen Values and Eigen Vectors

• Matrix Decomposition



Linear Independence and Matrix Rank
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It is a full rank if the rank is min{n,d}. This is the maximum rank.



Matrix Rank: Examples

What are the ranks for the following matrices? How about an 
identity matrix



Matrix Inverse
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Matrix Trace

𝑑 × 𝑑

𝑑 × 𝑑

𝑑 × 𝑑

𝑑 × 𝑑

𝑑



Matrix Determinant
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Properties of Matrix Determinant
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Eigenvalues and Eigenvectors
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Computing Eigenvalues and Eigenvectors

𝑑.
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Eigenvalue Example

Slide credit: Shubham Kumbhar



Matrix Eigen Decomposition
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Can a matrix have the same eigenvalues?

Are the eigenvectors of a matrix orthogonal 
against each other?

If two vectors are linearly independent, 
does it mean they are orthogonal against 
each other?
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• Linear Algebra Basics

• Norms

• Multiplications

• Matrix Inversion

• Trace and Determinant

• Eigen Values and Eigen Vectors

• Singular Value Decomposition



Singular Value Decomposition
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ത𝑋𝑛×𝑑
n: instances
d: dimensions
X is a centered matrix

ത𝑋 = 𝑈Σ𝑉𝑇

𝑈𝑛×𝑛 → 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 → 𝑈 × 𝑈𝑇 = 𝐼

Σ𝑛×𝑑 → 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥

V𝑑×𝑑 → 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 → 𝑉 × 𝑉𝑇 = 𝐼
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𝐶𝑑×𝑑 =
ത𝑋𝑇 ത𝑋

𝑛

ത𝑋 = 𝑈Σ𝑉𝑇

𝐶 =
ത𝑋𝑇 ത𝑋

𝑛

𝐶 =
𝑉Σ𝑇𝑈𝑇𝑈Σ𝑉𝑇

𝑛
=
𝑉Σ2𝑉𝑇

𝑛

Covariance matrix:



𝐶 =
𝑉Σ2𝑉𝑇

𝑛
= 𝑉

Σ2

𝑛
𝑉𝑇

So, we can directly calculate eigenvalue of a covariance matrix by 
having the singular value of matrix X directly

𝜆𝑖 =
Σ𝑖
2

𝑛
➔ The eigenvalues of covariance matrix

𝐶𝑉 = 𝑉
Σ2

𝑛
𝑉𝑇𝑉 = 𝑉

Σ2

𝑛

𝜆𝑖: Eigenvalue of 𝐶 or covariance matrix

Σ𝑖: Singular value of 𝑋 matrix

𝐶𝑉 = VΛ

𝐴𝑋 = XΛRemember: 



Geometric Meaning of SVD

Image Credit: Kevin Binz



Summary

• Linear Algebra Basics

• Norms

• Multiplications

• Matrix Inversion

• Trace and Determinant

• Eigen Values and Eigen Vectors

• Singular Value Decomposition
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