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Some logistics

» Creating your project’s team.

« Office hours are started.
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Why Linear Algebra?

¢ Linear algebra provides a way of compactly representing and
operating on sets of linear equations

4x, —5x,=—-13 —2x,+3x,=9
can be written inthe formof Ax = b

[4 —5] b = [—13]

X d . .
» A€ R"" “denotes a matrix withn rows and d columns, where
elements belong to real numbers.

® x € R? denotes a vector with d real entries. In this case, R% is a
column vector (d rows 1 column), but R% can also be thought of
as a matrix with 1 row and d columns in other situations.



Linear Algebra Basics

Transpose of a matrix results from flipping the rows and
columns. Given A € R* *¢, transpose is AT € R% %™

For each element of the matrix, the transpose can be written

The following properties of the transposes are easily verified
o (AT)T —
o (AB)"= BTAT
e (A+B)'= AT +BT

A square matrix A € R% > 4is symmetricif A = ATanditis
anti-symmetricif A = — A" . Thus each matrix can be written
as a sum of symmetric and anti-symmetric matrices.
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Norms

» Norm of a vector ||x|| is informally a measure of the “length”
of a vector

» More formally, a norm is any function f: R? - R that satisfies
o For all x € RY, f(x) 2 0 (non-negativity)
¢ f(x) =0is and only if x = 0 (definiteness)
o Forx € R%,te R, f(tx) = |t|f (x) (homogeneity)
e Forallx,y € R% flx+y)<fix) +fly) (triangle inequality)

» Common norms used in machine learning are

e £, norm

o ||lx]l; = \/Zf=1 xiz




Norms

e £, norm

o |[x]]; = Z,_ %]

e £, norm
o |lx]le = max;|x;]

» All norms presented so far are examples of the family of £,

norms, which are parameterized by a real numberp 2 1

o [Ix]l, = iz1lx%;|P) 7
P

» Norms can be defined for matrices, such as the Frobenius
norm.

Al = [S2,3,4,2= Jor@TA)

10



Vector Norm Examples

vai+ay




Special Matrices

The identity matrix, denoted by | € R**%js a square matrix

with ones on the diagonal and zeros everywhere else

A diagonal matrix is a matrix where all non-diagonal 'ELEMENTS'
are 0. This is typically denoted as D = diag (dy,d,, ..., dg)

Two vectors x, y € R? are orthogonal if x.y = 0. A square
matrix U € R? X 4 is Orthonormalif all its columns are orthogonal
to each other and are normalized

It follows from orthogonality and normality that
o UTU=I=UUT

Is the inverse of a unitary
o | Ux||2 = ||x||2 matrix equal to its transpose?
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Multiplications

» The product of two matrices A € R"**%and B € R?*? is given
by C€ R"*P, where C;; = Y5-1 Ay By,

» Given two vectors x, y € R?, the term xy! (also x - y) is called
the inner product or dot product of the vectors, and is a real

number given byZ . For example,
V1
xy' =[x, x, x3]|V2|= 1 1 XY
Y3

» Given two vectorsx € R,y € R", the termx”y is called the
outer product of the vectors: x @ y

Is Dot Product a linear
operation?



Multiplications

. X1 X1Y1 X1Y2 X1YV3
xQy=xy =|X%|[Y1 Y2 Y3|= [X2V1 X2Y2 X3Y3
X3 X3Y1 X3Y2 X3Y3l

» The dot product also has a geometrical interpretation, for
vectors in X,y € R? with angle & between them

x-y = |x||y| cos®

which leads to use of dot product for testing orthogonality,
getting the Euclidean norm of a vector, and scalar projections.



Inner Product Properties

The inner product is a measure of correlation between two vectors,
scaled by the norms of the vectors




Inner Product Properties

The inner product is a measure of correlation between two vectors,
scaled by the norms of the vectors




Inner Product Properties

The inner product is a measure of correlation between two vectors,

scaled by the norms of the vectors

o

If two variables are uncorrelated, they are orthogonal and if two variables
are orthogonal, they are uncorrelated. (Can | really say that?)
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Linear Independence and Matrix Rank

» Aset of vectors {x;, x,,...,x,} € R? are said to be (linearly)
independent if no vector can be represented as a linear

combination of the remaining vectors. That is if
d—1

xd = Z X,
i=1
for some scalar values a4, @,, ... € R then we say that the vectors

are linearly dependent; otherwise the vectors are linearly
independent

» The column rank of a matrix A € R"** ¢ is the size of the
largest subset of columns of A that constitute a linearly

independent set. Row rank of a matrix is defined similarly for
rows of a matrix.

It is a full rank Iif the rank is min{n,d}. This is the maximum rank.



Matrix Rank: Examples

What are the ranks for the following matrices? How about an
identity matrix

1 23
A =

2 4 6

102
B=[(210

3 2 1



Matrix Inverse

o The inverse of a square matrix A € R**“is denoted A1 and
is the unique matrix suchthat A7%4 =1 =441

» For some square matrices A~! may not exist, and we say that A
is singular or non-invertible. In order for A to have an inverse,
A must be full rank.

» For non-square matrices the inverse, denoted by A" ,is given
by AT = (ATA)"'AT called the pseudo inverse
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Matrix Trace

» The trace of a matrix A € R* X% denoted as tr(A), is the sum
of the diagonal elements in the matrix

tr(A) = 2?=1 Aj;

» The trace has the following properties
o For A€ R** % tr(A) = trAT
o ForA,BER**% tr(A + B) = tr(4) + tr(B)
o ForAe RE*4d te R, tr(td) = t - tr(4)

e For A, B, C such that ABC is a square matrix tr(ABC) =
tr(BCA) = tr(CAB)

» The trace of a matrix helps us easily compute norms and
eigenvalues of matrices as we will see later



Matrix Determinant

Definition (Determinant)

The determinant of a square matrix A, denoted by |A|, is defined as

d
det (A) = Y (=1)" ay My

j=1

where M;; is determinant of matrix A without the row ¢ and column j.

ForaZmeatrixAz(




Properties of Matrix Determinant

o |A| = 'AT
o |[AB| = |A||B]

o |A| =0 if and only if A is not invertible
o If Ais invertible, then |A71| = ﬁ
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Eigenvalues and Eigenvectors

» Given a square matrix A € R? X dwe say that A € C is an
eigenvalue of Aand x € C" is an eigenvector if

Ax = Ax, x #0

» Intuitively this means that upon multiplying the matrix A with a
vector x, we get the same vector, but scaled by a parameter 4

» Geometrically, we are transforming the matrix A from its
original orthonormal basis/co-ordinates to a new set of
orthonormal basis x with magnitude as 4



Computing Eigenvalues and Eigenvectors

» We can rewrite the original equation in the following manner
Ax = Ax, x #0
> A-A)x=0, x#0

» This is only possible if (A — AI) is singular, thatis [(A —Al) | =
0.

» Thus, eigenvalues and eigenvectors can be computed.
¢ Compute the determinantof A — Al.
» This results in a polynomial of degree d.
¢ Find the roots of the polynomial by equating it to zero.
o The d roots are the d eigenvalues of A. They make A — Al singular.

o For each eigenvalue 4, solve (A — AI) x to find an eigenvector x



Eigenvalue Example

Eigenvalues
1 2| A4=-5
A= 5
3 -4 A =2
Determine eigenvectors: AX = Ax
X, +2x, = Ax, (I-A)x, +2x, =0

—
3x,—4x, = Ax, 3x, -(4+A)x, =0

Eigenvector for A, = -5

6x +2x, =0 —0.3162 3 |
= X, = or X, =
3x, +x,=0 - 0.9487 | | =3
Eigenvector for A, = 2 ) i o
_x] + 2x2 — O 0.8944 2
— X, = or X, =
3xl—6x2 :O _04472_ _l_

Slide credit: Shubham Kumbhar



Matrix Eigen Decomposition

» All the eigenvectors can be written together as AX = XA
where the columns of X are the eigenvectors of 4, and A is a
diagonal matrix whose elements are eigenvalues of A

» If the eigenvectors of A are invertible, then A = XAX ™!

» There are several properties of eigenvalues and eigenvectors
o Tr(A) = Yi_1 4
o |Al = TTi=1 A,
¢ Rank of A is the number of non-zero eigenvalues of A
o If A'is non-singular then 1/4; are the eigenvalues of A1

¢ The eigenvalues of a diagonal matrix are the diagonal elements
of the matrix itself!



Can a matrix have the same eigenvalues?

Are the eigenvectors of a matrix orthogonal
against each other?

If two vectors are linearly independent,
does it mean they are orthogonal against
each other?
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Singular Value Decomposition

_ n: iInstances
Xnxd d: dimensions |
X is a centered matrix

U,v, = unitary matrix > UxU" =1

X =U0zv" Ynxa — diagonal matrix

Vixg — unitary matrix -V x V1 =1

Upg oo oo e Up [ [ 0 0 Vig oo e e Vg
X=|: Xl 0 0 D 44l
: 0 O 0
U U | O 0 0 ] [Vaa e e Vg
U ) vt




Covariance matrix:

ED

Cdxd

X =Uuzv’
o L _VETUTuvT vsivT
XTX -




C = =V —VT
n n

32 32

CV=V—VTV=V—

n n

Remember: AX — XA

b : : .
A; = = = The eigenvalues of covariance matrix

n

A;: Eigenvalue of C or covariance matrix

;. Singular value of X matrix

So, we can directly calculate eigenvalue of a covariance matrix by
having the singular value of matrix X directly



Geometric Meaning of SVD

Image Credit: Kevin Binz
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