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Probability
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Three Key Ingredients in Probability Theory
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Random variables 𝑋 represents outcomes in sample space

A sample space is a collection of all possible outcomes

Probability of a random variable to happen 𝑝 𝑥 = 𝑝(𝑋 = 𝑥)

𝑝 𝑥 ≥ 0



Continuous variable  
Continuous probability distribution 

Probability density function
Density or likelihood value

Temperature (real number)
Gaussian Distribution

Discrete variable  
Discrete probability distribution 

Probability mass function
Probability value

Coin flip (integer)
Bernoulli distribution



𝑥𝜖𝐴

𝑝 𝑥 = 1

න𝑝(𝑥)𝑑𝑥 = 1
𝑥



Continuous Probability Functions

9



Discrete Probability Functions

In Bernoulli, just a single trial is conducted

k is number of successes

n-k is number of failures

𝒏
𝒌

The total number of ways of selection k distinct combinations of n

trials, irrespective of order.
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Example

Y = Flip a coin
X = Throw a 

dice

𝑛𝑖𝑗 = 3 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 5 𝑛𝑖𝑗 = 1 𝑛𝑖𝑗 = 5 20

𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 1 15

5 6 6 7 5 6 N=35

X

Y
𝑦𝑗=1 = ℎ𝑒𝑎𝑑

𝑦𝑗=2 = 𝑡𝑎𝑖𝑙

𝑥𝑖=1 = 1 𝑥𝑖=2 = 2 𝑥𝑖=3 = 3 𝑥𝑖=4 = 4 𝑥𝑖=5 = 5 𝑥𝑖=6 = 6

X and Y are random variables

N = total number of trials

𝐶𝑗

𝐶𝑖

𝒏𝒊𝒋 = Number of occurrence



𝑛𝑖𝑗 = 3 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 5 𝑛𝑖𝑗 = 1 𝑛𝑖𝑗 = 5 20

𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 1 15

5 6 6 7 5 6 N=35

X

Y
𝑦𝑗=1 = ℎ𝑒𝑎𝑑

𝑦𝑗=2 = 𝑡𝑎𝑖𝑙

𝑥𝑖=1 = 1 𝑥𝑖=2 = 2 𝑥𝑖=3 = 3 𝑥𝑖=4 = 4 𝑥𝑖=5 = 5 𝑥𝑖=6 = 6 𝐶𝑗

𝐶𝑖



𝑝(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗) =
𝑛𝑖𝑗

𝑁
Joint probability: 

Probability: 𝑝(𝑋 = 𝑥𝑖) =
𝑐𝑖
𝑁

Sum rule

𝑝 𝑋 = 𝑥𝑖 =

𝑗=1

𝐿

𝑝 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 ⇒ 𝑝 𝑋 =

𝑌

𝑃(𝑋, 𝑌)

Product rule

𝑝 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 =
𝑛𝑖𝑗

𝑁
=
𝑛𝑖𝑗

𝑐𝑖

𝑐𝑖
𝑁
= 𝑝 𝑌 = 𝑦𝑗 𝑋 = 𝑥𝑖 𝑝(𝑋 = 𝑥𝑖)

𝑝 𝑋, 𝑌 = 𝑝 𝑌 𝑋 𝑝(𝑋)

𝑝(𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖) =
𝑛𝑖𝑗

𝑐𝑖
Conditional probability: 



Conditional Independence
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𝑷 𝑭𝒍𝒖 𝑽𝒊𝒓𝒖𝒔,𝑫𝒓𝒊𝒏𝒌𝑩𝒆𝒆𝒓) = 𝑷 𝑭𝒍𝒖 𝑽𝒊𝒓𝒖𝒔)

𝑷 𝑯𝒆𝒂𝒅𝒂𝒄𝒉𝒆 𝑭𝒍𝒖, 𝑽𝒊𝒓𝒖𝒔,𝑫𝒓𝒊𝒏𝒌𝑩𝒆𝒆𝒓)
= 𝑷 𝑯𝒆𝒂𝒅𝒂𝒄𝒉𝒆 𝑭𝒍𝒖,𝑫𝒓𝒊𝒏𝒌𝑩𝒆𝒆𝒓)

𝑷 𝑽𝒊𝒓𝒖𝒔 𝑫𝒓𝒊𝒏𝒌𝑩𝒆𝒆𝒓) = 𝑷(𝑽𝒊𝒓𝒖𝒔)

𝑷 𝑯𝒆𝒂𝒅𝒂𝒄𝒉𝒆, 𝑭𝒍𝒖𝒆, 𝑽𝒊𝒓𝒖𝒔,𝑫𝒓𝒊𝒏𝒌𝑩𝒆𝒆𝒓
= 𝑷 𝑯𝒆𝒂𝒅𝒂𝒄𝒉𝒆 𝑭𝒍𝒖, 𝑽𝒊𝒓𝒖𝒔,𝑫𝒓𝒊𝒏𝒌𝑩𝒆𝒆𝒓) 𝑷 𝑭𝒍𝒖 𝑽𝒊𝒓𝒖𝒔,𝑫𝒓𝒊𝒏𝒌𝑩𝒆𝒆𝒓
𝐏 𝐕𝐢𝐫𝐮𝐬 𝐃𝐫𝐢𝐧𝐤𝐁𝐞𝐞𝐫 𝐏 𝐃𝐫𝐢𝐧𝐤𝐁𝐞𝐞𝐫
= 𝐏 𝐇𝐞𝐚𝐝𝐚𝐜𝐡𝐞 𝐅𝐥𝐮, 𝐃𝐫𝐢𝐧𝐤𝐁𝐞𝐞𝐫 𝐏 𝐅𝐥𝐮 𝐕𝐢𝐫𝐮𝐬 𝐏 𝐕𝐢𝐫𝐮𝐬 𝐏(𝐃𝐫𝐢𝐧𝐤𝐁𝐞𝐞𝐫)
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Bayes’ Rule
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Bayes’ Rule
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Mean and Variance
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Mean and average



Variance and average:



Covariance:



Correlation:



For Joint Distributions

30Uncorrelated vs Independent RV

https://towardsdatascience.com/uncorrelated-vs-independent-random-variables-definitions-proofs-examples-26422589a5d6#:~:text=They%20are%20not%20the%20same%20thing%E2%80%A6&text=In%20the%20fields%20of%20Probability,and%20RVs%20being%20%E2%80%9Cindependent%E2%80%9D.
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Gaussian Distribution

Probability versus likelihood

𝑓(𝑥|𝜇, 𝜎2) =
1

2𝜋𝜎2
𝑒
−
𝑥−𝜇 2

2𝜎2

https://www.quora.com/What-is-the-difference-between-probability-and-likelihood-1


Prob vs Likelihood



Prob vs Likelihood



Multivariate Gaussian Distribution
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−



Properties of Gaussian Distribution
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Central Limit Theorem

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6

X

Probability mass function of a biased dice
Let’s say, I am going to get a 
sample from this pmf having a 

size of 𝒏 = 𝟒

𝑆1 = 1,1,1,6 ⇒ 𝐸 𝑆1 = 2.25

𝑆2 = 1,1,3,6 ⇒ 𝐸 𝑆2 = 2.75

⋮

𝑆𝑚 = 1,4,6,6 ⇒ 𝐸 𝑆𝑚 = 4.25

3.52.51 4.5 6

According to CLT, it will follow 
a bell curve distribution 

(normal distribution)
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Maximum Likelihood Estimation
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Main assumption:
Independent and identically distributed random variables

i.i.d



Maximum Likelihood Estimation

For Bernoulli (i.e. flip a coin):

Objective function: 𝑃 𝑥𝑖|𝜃 = 𝜃𝑥𝑖 1 − 𝜃 1−𝑥𝑖 𝑥𝑖 ∈ 0,1 𝑜𝑟 {ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙}

𝐿 𝜃|𝑋 = 𝐿(𝜃|𝑋 = 𝑥1, 𝑋 = 𝑥2, 𝑋 = 𝑥3, … , 𝑋 = 𝑥𝑛)

i.i.d assumption

𝐿 𝜃|𝑋 =ෑ

𝑖=1

𝑛

𝑃 𝑥𝑖|𝜃 =ෑ

𝑖=1

𝑛

𝜃𝑥𝑖 1 − 𝜃 1−𝑥𝑖

𝐿 𝜃|𝑋 = 𝜃𝑥1 1 − 𝜃 1−𝑥1 × 𝜃𝑥2 1 − 𝜃 1−𝑥2 …× 𝜃𝑥𝑛 1 − 𝜃 1−𝑥𝑛 =

= 𝜃σ 𝑥𝑖 1 − 𝜃 σ(1−𝑥𝑖)

𝐿 𝜃|𝑋 =ෑ

𝑖=1

𝑛

𝑃 𝑥𝑖|𝜃



We don’t like multiplication, let’s convert it into summation

What’s the trick? Take the log

𝐿 𝜃|𝑋 = 𝜃σ 𝑥𝑖 1 − 𝜃 σ(1−𝑥𝑖)

𝑙𝑜𝑔𝐿 𝜃|𝑋 = 𝑙 𝜃|𝑋 = log 𝜃 

𝑖=1

𝑛

𝑥𝑖 + log 1 − 𝜃 

𝑖=1

𝑛

(1 − 𝑥𝑖)

𝜕𝑙(𝜃|𝑋)

𝜕𝜃
= 0

σ𝑖=1
𝑛 𝑥𝑖
𝜃

−
σ𝑖=1
𝑛 (1 − 𝑥𝑖)

1 − 𝜃
= 0

𝜃 =
1

𝑛


𝑖=1

𝑛

𝑥𝑖

How to optimize 𝜃?
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