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Probability

o Asample space S is the set of all possible outcomes of a
conceptual or physical, repeatable experiment. (S can be finite
or infinite.)

¢ E.g., Smay be the set of all possible outcomes of a dice roll: S
(1 2 3 4 5 6)

¢ E.g., Smay be the set of all possible nucleotides of a DNA site: S

(A C G T) f

¢ E.g., S may be the set of all possible time-space positions of an
aircraft on a radar screen.

» An Event A is any subset of S

¢ Seeing "1" or "6" in a dice roll; observing a "G" at a site; UAOO7 in
space-time interval



Three Key Ingredients in Probability Theory

A sample space is a collection of all possible outcomes

Random variables X represents outcomes in sample space

Probability of a random variable to happen  p(x) = p(X = x)

p(x) =0



Continuous variable
Continuous probability distribution
Probability density function
Density or likelihood value
Temperature (real number)
Gaussian Distribution

Discrete variable
Discrete probability distribution
Probability mass function
Probability value
Coin flip (integer)
Bernoulli distribution

p(x)dx =1

R



Continuous Probability Functions

o Examples:
¢ Uniform Density Function:
1
fx(x)z h—aq foranSb
0 otherwise

¢ Exponential Density Function:
X

fe(x) = %e_ﬁ forx=>0

—X
E(x)=1—e# forx >0

¢ Gaussian(Normal) Density Function

i) = e T
X) = e 20
* V2o




Discrete Probability Functions

¢ Examples:
¢ Bernoulli Distribution:

1—p forx=20
“lp forx =1

In Bernoulli, just a single trial is conducted

¢ Binomial Distribution: k is number of successes

« P(X = k)= )p*( —p)*
n-k is number of failures

(',:) The total number of ways of selection k distinct combinations of n
trials, irrespective of order.
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Example
X and Y are random variables

N = total number of trials

n;; = Number of occurrence

X ;:Il'ir;reow ° Y = Flip a coin
X C
Xi—1 =1 Xi=2 = Xi=3 = Xiza =4 Xi=5 =5 Xj=g = ]
Vi = tail |Mj =3 |mj=4 ;=2 1n;=>5In;=1/In; = 20
A Yi=1 = head | ™ij = Nij = ng =4 | n; = ngj = nij = 15
C;| > 6 6 7 5 6 N=35




Vi=2 = tail

Vj=1 = head

X

Xjoq =1 Xi=2=2 Xiz3=3 Xjzq=4 Xi=5=5 Xj—=06 Cj

n;j = njj=4 |n;=2|n;=5|n;=1|n;=5 20

nj=2|n;=2n;=4|n;=2|n;=4|n;=1 15
5 6 6 7 5 6 N=35




Ci
Probability: p(X = x;) = ~
n;i
Joint probability: p(X =x,Y=y)) = W]
s _— n,;
Conditional probability: p(Y = yi|X = x;) = C_l]
Sum rule

p(X = x;) = Zp(x —x, Y =) = p(X) = Z P(X,Y)

Product rule

Tlij Tlij Ci

p(X =x,Y =y;) = =N p(Y =yi|X = x)p(X = x;)
l

p(X,Y) =pY|X)p(X)



Conditional Independence

» Examples:

P(Virus| DrinkBeer) = P(Virus)
iff Virus is independent of Drink Beer

P(Flu | Virus, DrinkBeer) = P(Flu |Virus)
iff Fluisindependent of Drink Beer, given Virus

P(Headache | Flu,Virus, DrinkBeer)
= P(Headache|Flu, DrinkBeer)

iff Headache is independent of Virus, given Flu and Drink Beer

Assume the above independence, we obtain:

P(Headache, Flue,Virus, DrinkBeer)

= P(Headache|Flu,Virus, DrinkBeer) P(Flu|Virus, DrinkBeer)
P(Virus|DrinkBeer)P(DrinkBeer)

= P(Headache|Flu, DrinkBeer)P(Flu|Virus)P(Virus)P(DrinkBeer)

20
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Bayes’ Rule

» P(X]Y)=Fraction of the worlds in which X is true given that Y is
also true.

» For example:
¢ H="Having a headache”
¢ F=“Coming down with flu”
o P(Headche|Flu) = fraction of flu-inflicted worlds in which you
have a headache. How to calculate?

o Definition:
P(X,Y) PYIX)P(X)

PY)  P(Y)
P(X,Y) = P(Y|X)P(X)

P(X|Y) =

Corollary:

This is called Bayes Rule

22



Bayes’ Rule

» P(Headache|Flu) = “eeZ2cer)
_ P(Flu|Headache)pr(Headache)
- P(Flu)

Other cases:

B P(X|Y)P(Y)
» P(Y1X) = PX|Y)P(V)+P(X|Y)P(~Y)
P(X|Y)P()
P(Y =vy;|X) =
» PO =yild) =5 5@V = yoro—m
Pp(X|Y,Z)p(v,2)
o P(Y|X,Z2) = ( |P(X’)Z) =

P(X|Y,Z)pP(v,2)
P(X|Y,Z)p(v,2)+P(X|Y,Z)P(~Y,2)

23
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Mean and Variance

Expectation: The mean value, center of mass, first moment:

(0.0)

Ex[g(X)] = f g()px(O)dx = p

N-th moment: g(x) = x™
N-th central moment: g(x) = (x — u)™

(0.0

Mean: Ex[X] = [~ xpx(x)dx

o E|laX]| = aE[X]

o Ela + X| = a + E[X]
Variance(Second central moment): Var(x) =
Ex[(X — Ex[X])?] = Ex[X?] — Ex[X]*

o Var(aX) = a?Var(X)

o Var(a + X) =Var(X)

y4e )



Mean and average



Variance and average:



Covariance:



Correlation:



For Joint Distributions

» Expectation and Covariance:
o E[X +Y] = E[X] + E[Y]
o cov(X,Y) = E[(X — Ex[X])(Y — Ey(Y)] = E[XY] — E[X]E[Y]
e Var(X +Y) =Var(X) + 2cov(X,Y) + Var(Y)

Uncorrelated vs Independent RV 30



https://towardsdatascience.com/uncorrelated-vs-independent-random-variables-definitions-proofs-examples-26422589a5d6#:~:text=They%20are%20not%20the%20same%20thing%E2%80%A6&text=In%20the%20fields%20of%20Probability,and%20RVs%20being%20%E2%80%9Cindependent%E2%80%9D.
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Gaussian Distribution

, _(x—w)*
» Gaussian Distribution: f(x|u,o) = e 207
\V2mo?
Probability density function
R R
1.0
- p:o’ 0220.2’— -
H=0, 0%=1.0, == ]
0.8 H=0, 0%=5.0, ==
- [==2, 02=05, m—
0.6
0.4
0.2
0.0
| | | | | 'E | | | | |
-5 -4 -3 -2 -1 0 1 2 3 4 5
X

Probability versus likelihood



https://www.quora.com/What-is-the-difference-between-probability-and-likelihood-1

Prob vs Likelihood



Prob vs Likelihood



Multivariate Gaussian Distribution

1 1
p(%“.l,Z) — (271')”/2|Z|1/2 exp{_i (x R #)Tz_l(x R ﬂ)}

¢ Moment Parameterization y = E(X)
% = Cov(X) = E[(X —p)(X — p)"]

» Mahalanobis Distance A%2= (x — pu)"Z~1(x — u)

¢ Tons of applications (MoG, FA, PPCA, Kalman filter,...)

35



Properties of Gaussian Distribution

¢ The linear transform of a Gaussian r.v. is a Gaussian. Remember
that no matter how x is distributed

E(AX +b) =AE(X)+0b
Cov(AX + b) = ACov(X)AT
this means that for Gaussian distributed quantities:
X~NWwzx) > AX+b~N(Au+ b, AXAT)

» The sum of two independent Gaussian r.v. is a Gaussian
Y =X1 +X2J X1J_X2 _)ﬂy = U4 +H,2,Zy =Zl +22

» The multiplication of two Gaussian functions is another
Gaussian function (although no longer normalized)

N(a,A)N(b,B) x N(c,C),
whereC = (A~1+B )1, c=CAta+ CB~1b

37



Central Limit Theorem

Probability mass function of a biased dice

0.35

0.3
0.25
0.2
0.15
0.1
0.05 I
0 L
1 2 3 4 5 6
X

Let’s say, I am going to get a
sample from this pmf having a
sizeofn = 4

S, ={1,1,1,6} = E(S,) = 2.25
S, ={1,1,3,6} = E(S,) = 2.75

S, =11,4,6,6} = E(S,,) = 4.25
According to CLT, it will follow

a bell curve distribution
(normal distribution)
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Maximum Likelihood Estimation

e Probability: inferring probabilistic quantities for data given fixed
models (e.g. prob. of events, marginals, conditionals, etc).

e Statistics: inferring a model given fixed data observations
(e.g. clustering, classification, regression).

Main assumption:

Independent and identically distributed random variables
i.i.d

40



Maximum Likelihood Estimation

For Bernoulli (i.e. flip a coin):

Objective function: P(x;|0) = 6%i(1 — 9)17%: x; € {0,1} or {head, tail}
L(QlX) — L(QlX — xl,X — XZ,X = X3, ,X — xn)

I.i.d assumption

Lo = | [Peale)
=1

n

Lo =] [pauler =] [oma - oyt
=1

=1

L(BIX) =6*1(1—-0) "1 x0%2(1—0)17*2 .. x 0% (1 — )™ =
= QL Xi(1 — )21



We don't like multiplication, let’s convert it into summation

What's the trick? Take the log

L(8]X) = 62%i(1 — §)2(1=%1)
logL(0|X) =1(8|X) =1log(8) ) x; +log(1—0) ) (1—x;)
)

How to optimize 67?

oLeIx) _ i1 % Ni=1(1—xy)
06 0 1—6

n
0=
n .

=1

=0
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