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Uncertainty and Information

Information is processed data whereas knowledge is information that is
modeled to be useful.

You need information to be able to get knowledge

e information #= knowledge
Concerned with abstract possibilities, not their meaning
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Created by Bruce Campbell: “DIKA — ancient Chinese saying for get up and
DO! Data-Information-Knowledge-Action.”
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Uncertainty and Information
0 @

25%| Rainy

50%| Rainy

75%| Sunny
50%| Sunny

Which day is more uncertain?

How do we quantify uncertainty?

High entropy correlates to high information or the more
uncertain



| A o
\ — [ Cot, @0t ,dog] éi ~—> ovF
& _ ‘wke actiorr /
o T e knowledf 2 PO
o¥a_
| \ B
— 3 sd = = = (@) -

E[_gm]:iPM‘aw ~> E[;;(x)1=ipﬁx)xu)= H %)

H(,)():: p(\(: Cd‘t) I (X = Cax) 4 P (x= doj) I (Y:.- O‘OJ)

= 4 1,
\'\ W) = —Z,-' \sz ._.é.- + L‘ \ 1;'\

(A
‘033 =2



\(=6% H()()=-‘Z—-|0326+ ....--...\.._g.. ,

k=05 Ho- logk , o
2

P()(: ax)=0 P (X= dod)=4

Hx) = -b% - 0%0 = ¢
0 0




Information

Let X be a random variable with distribution p(x)
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MOTIVATION: COMPRESSION

» Suppose we observe a sequence of events:

» Coin tosses

» Words in a language
» notes in a song

> etc.

» We want to record the sequence of events in the smallest
possible space.

» In other words we want the shortest representation which
preserves all information.

» Another way to think about this: How much information
does the sequence of events actually contain?



MOTIVATION: COMPRESSION

To be concrete, consider the problem of recording coin tosses in

unary. —
’ @T,H\ @chJ)-—- %
Approach 1: @Pu: W=t ~®@ higher  Sorpar,/
© © H| T 5 Lo
0 00 0 | 00 "1t needs hivh e birs
infosnotion o;jaq-,d_rJ
00, 00, 00, 00, 0 o it

We used 9 characters

Which one has a higher probability: T or H?
Which one should carry more information: T or H?



MOTIVATION: COMPRESSION

To be concrete, consider the problem of recording coin tosses in

unary.
L0 1 8
Approach 2:
H|T
00 | O
0,0,0,0,00

We used 6 characters



MOTIVATION: COMPRESSION

» Frequently occuring events should have short encodings

» We see this in english with words such as “a”, “the”,
“and”, etc.

» We want to maximise the information-per-character
» seeing common events provides little information

» seeing uncommon events provides a lot of information



Information Theory

® Tnformation theory is a mathematical
framework which addresses questions like:

» How much information does a random variable carry
about?

» How efficient is a hypothetical code, given the
statistics of the random variable?

» How much better or worse would another code do?

» Is the information carried by different random
variables complementary or redundant?

Pex,y) = P (x\y) PO)
BOLYY = Hixly) + ) o
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Entropy

o Entropy H(Y) of a random variable Y

——\Hy)= L Py) Jog L
2 pw)

K
H)=(=) PO = k)log, Py = k)
k=1

o H(Y) is the expected number of bits needed to encode a
randomly drawn value of Y (under most efficient code)

¢ Information theory:

Most efficient code assigns —log,P(Y = k) bits to encode the message
Y = k, So, expected number of bits to code one randomYY is:

K
- Z P(y = k)log, P(y = k)
k=1
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¢ S is a sample of coin flips

¢ p, isthe proportion of headsin S

¢ p_ isthe proportion of tailsin S

¢ Entropy measure the uncertainty of S

H(S) = —p4 logy p+ — p—logyp—

1Y



Entropy Computation: An Example

H(S) = —py logypt — p—logyp—

(D | head 0 P(h)=0/6=0 P(t)=6/6=1
tail 6 Entr0py=—0I090—1Iog1=—0—0=@
(@ | head 1 P(h) = 1/6 P(t) = 5/6
tail 5 Entropy = - (1/6) log, (1/6)— (5/6) log, (5/6) =(0.65
~) head \| P(h)=2/6 P(t) = 4/6

2
_ tall 4 ’/, Entropy = - (2/6) log, (2/6)— (4/6) log, (4/6)@
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Properties of Entropy

1
H(P) = ) p;-log—
i Dq

1. Non—negativ

2. Invariant wrt permutation of its inputs:
H(p1,p2,---,pPk) = H(Pr (1), Pr(2) - -+ Pr(k))
3. For any other probability distribution {q1 qg, ey QL)

=
=
I

4. H(P) <(logk,)with equality iff p;=1/k Vi fed

5. The further P is from uniform, the lower the entropy.

21
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>(ueled =28, 1 Joint Entropy

,_———---

P(M=\ow|\3—-_‘°"’_u" 0-3

P(Tocod [N-low)= 24— - ¢ Temperature
€old\[ mild | hot

jow |[<0.1I |0.4 |0.1 0.6

huidity | hign | 0.2 | 0.1 |0.1 | 0.4
0.3 /{05 [0.2]1.0

J I

P( T= llO(.') ’092 P(T:’ het)

C-""l M\\’ ht‘l’ e —
_ il
o H(T) = H(0.3,0.5,0.2) = 1.48548 P(T=csid) apﬁ_c,l,;P‘T dflog e ¥
0.3 |o
e H(M) = H(0.6,0.4) = 0.970951 __ oy
‘ CREMz HE)+H(m)
o H(T) + H(M) = 2.456431] AT = VD AW e/

e Joint Entropy: consider the space of (t,m) events H(T, M) =

Stm P(T = t, M =m) - 109 pr= t,1M=m)

1(0.1,0.4,0.1,0.2,0.1,0.1) = 2.32193

H( -‘; M) = P(‘r::(olot;j:lau) ‘OJ ,ﬁ\ + P(‘r: Co‘J/Nzl'ﬂ}) \o?zl_.-- + ... + P(T-‘- }'Ot, ﬂ:h:&h) ‘ZJ__
i iyt R
Notice that H(T,M) < H(T)+ H(M) !

H(T,M) = H(T|M) + H(M) = H(M|T) + H(T)
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\Av@ﬁ@/( Conditional Entropy

— N p
HOYIX) = ) pQOHIYIX=x)= ) plxylog-

~—— \_/
xeX XEX,yeEY

P(M:IO“’) H(T‘MHOW) -+ P(M'-‘ }h'p/}') HC” NJW@D
P(T =t|M = m)

O-b W(TIAzk) ¢ 0.4 H (Tim=hih)

cold | mild | hot

ow [1/6 [4/6 |1/6 | 1.0

high |2/4 |1/4 | 1/4 | 1.0

(%)
X,y)

L CTim) =

C_o\) m\ﬂl \‘\0{

Con(h{:}fyél Entropy: \)
o H(T|\M =low) = H({1/6,4/6,1/6) = 1.25163 -6‘:_‘0356 - .2'_ ‘ojzéq+—£—‘ojz_£

o H(T|M = high) = H(2/4,1/4,1/4) = 1.5

e Average Conditional Entropy (aka equivocation):
H(T/M) =%, P(M =m) - HT|M =m) =
0.6 - H(T|M = low) + 0.4 - H(T|M = high) = 1.350978
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https://en.wikipedia.org/wiki/Conditional_entropy

Avesse  Conditional Entropy

P(M = m|T = t)

cold | mild | hot
low|1/3 |4/5 |1/2
high |2/3 [1/5 | 1/2
1.0 | 1.0 1.0

Conditional Entropy:
e H(M|T = cold) = H(1/3,2/3) = 0.918296
o H(M|T = mild) = H(4/5,1/5) = 0.721928
e H(M|T = hot) = H(1/2,1/2) = 1.0
e Average Conditional Entropy (aka Equivocation):
HM/T)=,P(T=t)- HM|T =t) =

0.3 H(M|T = cold) 4+ 0.5 - H(M|T = mild) + 0.2 - H(M|T =
hot) = 0.8364528
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Conditional Entropy

» Conditional entropy H (Y |X) of a random variable Y given X;

Discrete random variables:

}

p(x;)

HOYIX) = ) peHYIX =x) = ) plxi,ylog

x. .
xeX xeX,yeyY p( L yl)

Mixed settingf Continuous (over x) and’discrete (over y):

K
HOX) = = [ | D p(y = klx) logo(y = klx) | p(xi)dx
=1
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Mutual Information i)
(dog @{

¢ Mutual information: quantify the reduction in uncerntaln in »%

Y after seeing feature X;
label

V’v
X= F K I(X,Y) = H(Y)- @
leok

¢ The more the reduction in entropy, the more informative a
feature.

¢ Mutual information is symmetric
o I(X;,Y)=1(Y,X;) = HX;) — HX;|Y)

_ K Cny — p(xi,y=k) _
o IYIX) = [Yrp(xyy k)logzp(xl)p(y 5 dx;

o = [YEp(xly = )p(y = k) log, 2EIY =K 4,
f p I.y p g p(x;) l
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Properties of Mutual Information

———

:
G(X, Y) = H(X) — H(XQI 1

= ;P(m) . log iy " ZP(CL‘ y) - 10g Ze

= Y P(=,y)-log
ﬁl z. P(z,y)

Properties of Average Mutual Information:

e Symmetric
e Non-negative
o Zero Iff X,Y independent
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https://en.wikipedia.org/wiki/Mutual_information#Relation_to_conditional_and_joint_entropy

CE and MI: Visual Illustration

| H(X,Y) |

Image Credit: Christopher Olah. 29
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\

Let’s work on this subject in our Optimization lecture
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Cross Entropy

Cross Entropy: The expected number of bits when a wrong
distribution Q is assumed while the data actually follows a
distribution P e O J

P

predi
/“Zp log g(z) = H(P) + KL[P][Q]

reX - - —

This is because: ]
H(p,q) = Eplli| = Eyp log

Zp(a:z ) log q(a:@)
H(p Zp (z) log q(x).
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Kullback-Leibler Divergence

Another useful information theoretic quantity measures the difference between two

distributions.
P(s)
1
SHIQ(S E P(s)log 06

Y Pl o5 ~HIPI = H(P,Q) — H(P)

Cross entropy KL Divergence is
- | _ _ _ a KIND OF
Excess cost in bits paid by encoding according to () instead of P. distance
measurement

KLIPQ] = Y P(s)log 5

ey L P@es <logY P(s)5 By Jensen Inequality
convex?

zlogZQ(s) =logl =0

So KL[P||@Q] > 0. Equality iff P = Q When P = Q, KL[P||Q] =0


https://www.probabilitycourse.com/chapter6/6_2_5_jensen's_inequality.php

Take-Home Messages

® Entropy
» A measure for uncertainty
» Why it is defined in this way (optimal coding)
» [ts properties

® Joint Entropy, Conditional Entropy, Mutual Information
» The physical intuitions behind their definitions
» The relationships between them

® Cross Entropy, KL Divergence
» The physical intuitions behind them
» The relationships between entropy, cross-entropy, and KL divergence

33
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