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Uncertainty and Information

Information is processed data whereas knowledge is information that is
modeled to be useful.

You need information to be able to get knowledge

e information #= knowledge
Concerned with abstract possibilities, not their meaning
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Uncertainty and Information

25% | Rainy

50% | Rainy

75%| Sunny
50%| Sunny

Which day is more uncertain?

How do we quantify uncertainty?

High entropy correlates to high information or the more
uncertain









Information

Let X be a random variable with distribution p(x)

1
I(X) = 108(@)



MOTIVATION: COMPRESSION

» Suppose we observe a sequence of events:

» Coin tosses

» Words in a language
» notes in a song

> etc.

» We want to record the sequence of events in the smallest
possible space.

» In other words we want the shortest representation which
preserves all information.

» Another way to think about this: How much information
does the sequence of events actually contain?



MOTIVATION: COMPRESSION

To be concrete, consider the problem of recording coin tosses in

unary.
] G D = |
Approach 1:
| I
0 | 00
00, 00, 00, 00,0

We used 9 characters

Which one has a higher probability: T or H?
Which one should carry more information: T or H?



MOTIVATION: COMPRESSION

To be concrete, consider the problem of recording coin tosses in

unary.
L0 1 8
Approach 2:
H|T
00 | O
0,0,0,0,00

We used 6 characters



MOTIVATION: COMPRESSION

» Frequently occuring events should have short encodings

» We see this in english with words such as “a”, “the”,
“and”, etc.

» We want to maximise the information-per-character
» seeing common events provides little information

» seeing uncommon events provides a lot of information



Information Theory

® Tnformation theory is a mathematical
framework which addresses questions like:

» How much information does a random variable carry
about?

» How efficient is a hypothetical code, given the
statistics of the random variable?

» How much better or worse would another code do?

» Is the information carried by different random
variables complementary or redundant?
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Entropy

o Entropy H(Y) of a random variable Y
K
H(Y) = = ) P(y = k)log, P(y = k)
k=1

o H(Y) is the expected number of bits needed to encode a
randomly drawn value of Y (under most efficient code)

¢ Information theory:

Most efficient code assigns —log,P(Y = k) bits to encode the message
Y = k, So, expected number of bits to code one randomYY is:

K
- Z P(y = k)log, P(y = k)
k=1
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1.0

0.0 0.5 1.0

¢ S is a sample of coin flips

» p. isthe proportion of heads in §

¢ p_ isthe proportion of tailsin S

¢ Entropy measure the uncertainty of S

H(S) = —p4 logy p+ — p—logyp—

1Y



Entropy Computation: An Example

H(S) = —py logypt — p—logyp—

head 0 P(h)=0/6=0 P(t)=6/6=1

tail 6 Entropy=-0log0-1log1=-0-0=0

head 1 P(h) =1/6 P(t) = 5/6

tail 5 Entropy = - (1/6) log, (1/6)— (5/6) log, (5/6) = 0.65
head 2 P(h) = 2/6 P(t) = 4/6

tail 4 Entropy = - (2/6) log, (2/6)— (4/6) log, (4/6) = 0.92
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Properties of Entropy

1
H(P) = ) p;-log—
3 P

. Non-negative: H(P) >0

. Invariant wrt permutation of its inputs:
H(p1,p2,---,Pk) = H(Pr(1), Pr(2) -+ Pr(k))

. For any other probability distribution {q1,q2,...,qx}:
1

1
H(P) = Zpi--log— < sz--log—
i p; K q;

. H(P) <logk, with equality iff p;,=1/k Vi

. T he further P is from uniform, the lower the entropy.

21



Outline

® Motivation
® Entropy
® Conditional Entropy and Mutual Information <

® Cross-Entropy and KL-Divergence

22



hu'Vidity

Joint Entropy

emperature

cold

mild

hot

low
high

0.1
0.2

0.4
0.1

0.1
0.1

0.6
0.4

0.3

0.5

0.2

1.0

e H(T) = H(0.3,0.5,0.2) = 1.48548
e H(M) = H(0.6,0.4) = 0.970951
o H(T)+ H(M) = 2.456431

e Joint Entropy: consider the space of (t,m) events H(T, M) =

Stm P(T = t, M =m) - 109 pr= t,lem)
H(0.1,0.4,0.1,0.2,0.1,0.1) = 2.32193

Notice that H(T, M) < H(T) + H(M) '

H(T,M) = H(T|M) + H(M) = H(M|T) + H(T)



Conditional Entropy

p(x)
p(x,y)

HIYIX) = ) peOHYIX =0 = )" p(xlog

xeX XeEX,yeY

P(T = t|M = m)

cold | mild | hot
low |1/6 |4/6 [1/6| 1.0
high |2/4 |1/4 |1/4 | 1.0

Conditional Entropy:
o H(T|M =low) = H(1/6,4/6,1/6) = 1.25163
e H(T|M = high) = H(2/4,1/4,1/4) = 1.5

e Average Conditional Entropy (aka equivocation):
H(T/M) =XnP(M =m) - HT|M =m) =
0.6 - H(T|M = low) + 0.4 - H(T|M = high) = 1.350978
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https://en.wikipedia.org/wiki/Conditional_entropy

Conditional Entropy

P(M = m|T = t)

cold | mild | hot
low|1/3 |4/5 |1/2
high |2/3 [1/5 | 1/2
1.0 | 1.0 1.0

Conditional Entropy:

H(M|T = cold) = H(1/3,2/3) = 0.918296
H(M|T = mild) = H(4/5,1/5) = 0.721928
H(M|T = hot) = H(1/2,1/2) = 1.0

Average Conditional Entropy (aka Equivocation):

HM/T) =%:P(T=1t) - HM|T =1t) =

0.3- H(M|T = cold) +0.5- HM|T = mild) + 0.2 - H(M|T =
hot) = 0.8364528
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Conditional Entropy

» Conditional entropy H (Y |X) of a random variable Y given X;

Discrete random variables:

p(x;)

HOYIX) = ) peHYIX =x) = ) plxi,ylog

x. .
xeX xeX,yeyY p( L yl)

Mixed setting: Continuous (over x) and discrete (over y):

K
HOX) == [ Y] por = ki) loga(v = klxo) | pxds
k=1
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Mutual Information

¢ Mutual information: quantify the reduction in uncerntainty in
Y after seeing feature X;

I(X;,Y) = H(Y)- H(Y|X;)

o The more the reduction in entropy, the more informative a
feature.

¢ Mutual information is symmetric
o I(Xy,Y)=1(,X;) =HX;) —HX;|Y)

_ K Cny — p(xi,y=k) _
o IY1X) = [T p(x,y = k) logy 22200 dx,

xily =k
o =[S pCuly = Kp@ = k) log, =1 gy,
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Properties of Mutual Information

I(X,Y) = H(X) — H(XIY)

= ;P(m) . log P( )~ ZP(:L‘ y) - 10g (i|y)
_ ) P(wly)
_ ) P(z,y)

Properties of Average Mutual Information:

e Symmetric
e Non-negative
o Zero Iff X,Y independent

28


https://en.wikipedia.org/wiki/Mutual_information#Relation_to_conditional_and_joint_entropy

CE and MI: Visual Illustration

| H(X,Y) |

Image Credit: Christopher Olah. 29
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Let’s work on this subject in our Optimization lecture
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Cross Entropy

Cross Entropy: The expected number of bits when a wrong
distribution Q is assumed while the data actually follows a
distribution P

= — Y p(z) logg(z) = H(P) + KL[P][Q]

zekX

This is because:




Kullback-Leibler Divergence

Another useful information theoretic quantity measures the difference between two

distributions.
P(s)
1
SHIQ(S E P(s)log 06

Y Pl o5 ~HIPI = H(P,Q) — H(P)

Cross entropy KL Divergence is
- | _ _ _ a KIND OF
Excess cost in bits paid by encoding according to () instead of P. distance
measurement

KLIPQ] = Y P(s)log 5

ey L P@es <logY P(s)5 By Jensen Inequality
convex?

zlogZQ(s) =logl =0

So KL[P||@Q] > 0. Equality iff P = Q When P = Q, KL[P||Q] =0


https://www.probabilitycourse.com/chapter6/6_2_5_jensen's_inequality.php

Take-Home Messages

® Entropy
» A measure for uncertainty
» Why it is defined in this way (optimal coding)
» [ts properties

® Joint Entropy, Conditional Entropy, Mutual Information
» The physical intuitions behind their definitions
» The relationships between them

® Cross Entropy, KL Divergence
» The physical intuitions behind them
» The relationships between entropy, cross-entropy, and KL divergence
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