

Machine Learning CS 4641-7641

Clustering Analysis and K-Means

Mahdi Roozbahani Georgia Tech

Some of the slides are inspired based on slides from Chao Zhang, and Le Song.

60+ hours on 16 GPU nvidia CUDA cluster.

Outline

- Clustering
- Distance Function
- K-Means Algorithm
- Analysis of K-Means

Clustering Images

Goal of clustering:

Divide object into groups, and objects within a group are more similar than those outside the group

Clustering Other Objects

O 1 2 3 4 5 6 7 8 9

Ο \boldsymbol{q} Э з っ ລ ο ھا a з 2 a ч Ċ, Я n \sim cз -5 Ο З ຉ ú З S Э S a oB q

Clustering is Subjective

What is consider similar/dissimilar?

Clustering is subjective

Simpson's Family

School Employees

Females

Males

Are they similar or not?

So What is Clustering in General?

- You pick your similarity/dissimilarity function
- The algorithm figures out the grouping of objects based on the chosen similarity/dissimilarity function
 - Points within a cluster is similar
 - Points across clusters are not so similar
- Issues for clustering
 - How to represent objects? (Vector space? Normalization?)
 - What is a similarity/dissimilarity function for your data?
 - What are the algorithm steps?

Outline

- Clustering
- Distance Function
- K-Means Algorithm
- Analysis of K-Means

Properties of Similarity Function

- Desired properties of dissimilarity function
 - Symmetry: d(x, y) = d(y, x)
 - Otherwise you could claim "Alex looks like Bob, but Bob looks nothing like Alex"
 - Positive separability: d(x, y) = 0, if and only if x = y
 - Otherwise there are objects that are different, but you cannot tell apart
 - Triangular inequality: $d(x, y) \le d(x, z) + d(z, y)$
 - Otherwise you could claim "Alex is very like Bob, and Alex is very like Carl, but Bob is very unlike Carl"

• Minkowski distance: $d(x, y) = \sqrt[p]{\sum_{i=1}^{d} (x_i - y_i)^p}$

• Euclidean distance: p = 2

- Manhattan distance: p = 1, $d(x, y) = \sum_{i=1}^{d} |x_i y_i|$
- "inf"-distance: $p = \infty$, $d(x, y) = \max_{i=1}^{d} |x_i y_i|$

Example

• Euclidean distance: $\sqrt{4^2 + 3^2} = 5$

• Manhattan distance: 4 + 3 = 7

Some problems with Euclidean distance

Curse of dimensionality

Hamming Distance

- Manhattan distance is also called Hamming distance when all features are binary
 - Count the number of difference between two binary vectors

• Example, $x, y \in \{0,1\}^{17}$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
x	0	1	1	0	0	1	0	0	1	0	0	1	1	1	0	0	1
<u>y</u>	0	1	1	1	0	0	0	0	1	1	1	1	1	1	0	1	1

d(x,y)=5

Edit Distance

 Transform one of the objects into the other, and measure how much effort it takes

x INTE*NTION | | | | | | | | | | | y *EXECUTION dss is

d: deletion (cost 5)s: substitution (cost 1)i: insertion (cost 2)

$$d(x, y) = 5 \times 1 + 3 \times 1 + 1 \times 2 = 10$$

Outline

- Clustering
- Distance Function
- K-Means Algorithm
- Analysis of K-Means

Results of K-Means Clustering:

Image

Clusters on intensity

Clusters on color

K-means clustering using intensity alone and color alone

Image

Clusters on color

K-means using color alone, 11 segments (clusters)

* Pictures from Mean Shift: A Robust Approach toward Feature Space Analysis, by D. Comaniciu and P. Meer http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

K-Means Algorithm

Visualizing K-Means Clustering

K-Means Algorithm

• Initialize k cluster centers, $\{c_1, c_2, \dots, c_k\}$, randomly

Do

- Decide the cluster memberships of each data point, x_i by assigning it to the nearest cluster center (cluster assignment) $\pi(i) = argmin_{j=1,...,k} ||x_i - c_j||^2 \quad \text{Exp}$ ectation
- Adjust the cluster centers (center adjustment)

$$c_{j} = \frac{1}{|\{i:\pi(i) = j\}|} \sum_{i:\pi(i)} x_{i}$$
Maximization
$$E_{i} = \frac{1}{|\{i:\pi(i) = j\}|} \sum_{i:\pi(i)} x_{i}$$
Maximization

While any cluster center has been changed

Outline

- Clustering
- Distance Function
- K-Means Algorithm
- Analysis of K-Means

Questions

Will different initialization lead to different results?

- Will the algorithm always stop after some iteration?
 Yes
 - No (we have to set a maximum number of iterations)
 - Sometimes

Formal Statement of the Clustering Problem

- Given n data points, $\{x_1, x_2, \dots, x_n\} x \in \mathbb{R}^d$
- Find k cluster centers, $\{c_1, c_2, \dots, c_k\} c \in \mathbb{R}^d$
- And assign each datapoint *i* to one cluster, $\pi(i) \in \{1, ..., k\}$
- Such that the averaged square distances from each datapoint to its respective cluster center is small $S_{om c_{1} = a_{1} + b_{1} + d_{1}}$

$$distortion = \min_{c,\pi} \sum_{i=1}^{n} ||x_i - c_{\pi(i)}||^2 \qquad Sum_{c_2} = \alpha_2 + b_2 + d_2$$

= $SUm_{c_1} + Sum_{c_2} + Sum_{c_3}$

92

Clustering is <u>NP-Hard</u>

• Find k cluster centers, $\{c_1, c_2, ..., c_k\}$ $c \in R^d$, and assign each data point i to one cluster, $\pi(i) \in \{1, ..., k\}$, to minimize

$$\min_{c,\pi} \sum_{i=1}^{n} \left\| x_i - c_{\pi(i)} \right\|^2$$
 NP-hard!

- A search problem over the space of discrete assignments
 - For all n data point together, there are k n possibility
 - The cluster assignment determines cluster centers, and vice versa

34

• For all N data point together, there are k^{n} possibility $\begin{array}{c}n & 3\\k = 2 - 8\\k = 2 - 8\\k = 2 \end{array}$ N = 3 (data points)

Cluster 1	Cluster 2				
{ }	$A_{J}B_{J}C$				
A,B,C	Z				
A	B, C				
B	$A_{j} <$				
۲	A,B				
A,B	Ċ				
A, C	B				
B,C	A				

Convergence of K-Means

Will kmeans objective oscillate?

$$\min_{c,\pi} \sum_{i=1}^{n} \|x_i - c_{\pi(i)}\|^2$$

- The minimum value of the objective is finite
- Each iteration of kmeans algorithm decrease the objective
 - Cluster assignment step decreases objective
 - $\pi(i) = argmin_{j=1,...,k} ||x_i c_{\pi(j)}||^2$ for each data point *i*
 - Center adjustment step decreases objective

•
$$c_i = \frac{1}{|\{i:\pi(i)=j\}|} \sum_{i:\pi(i)=j} x_i = argmin_c \sum_{i:\pi(i)=j} ||x_i - c_{\pi(j)}||^2$$

Time Complexity X= EX1. X2. --, Xd3

- Assume computing distance between two instances is $O(d)^{3}$ where d is the dimensionality of the vectors. $(x_{1}-y_{2})^{2} + \cdots + (x_{d}-y_{d})^{2}$
- Reassigning clusters for all datapoints:
 - O(kn) distance computations (when there is one feature)
 - O(knd) (when there is d features)
- Computing centroids: Each instance vector gets added once to some centroid (Finding centroid for each feature): O(nd).
- Assume these two steps are each done once for I iterations: O(Iknd).

How to Choose K?

Distortion score: computing the sum of squared distances from each point to its assigned center

Image credit: Dileka Madushan.