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Clustering Images
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Goal of clustering:
Divide object into groups, - %
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Clustering Other Objects
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Clustering is Subjective

What is consider similar/dissimilar?

Clustering is subjective
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Are they similar or not?




So What is Clustering in General?

» You pick your similarity/dissimilarity function

» The algorithm figures out the grouping of objects based on the
chosen similarity/dissimilarity function

¢ Points within a cluster is similar
e Points across clusters are not so similar

» Issues for clustering

o How to represent objects? (Vector space? Normalization?)
¢ What is a similarity/dissimilarity function for your data?
¢ What are the algorithm steps?
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Properties of Similarity Function

» Desired properties of dissimilarity function

o Symmetry: d(x,y) = d(y, x)

» Otherwise you could claim "Alex looks like Bob, but Bob looks
nothing like Alex”

o Positive separability: d(x,y) = 0,ifandonlyifx =y

» Otherwise there are objects that are different, but you cannot tell
apart

o Triangularinequality: d(x,y) < d(x,z) + d(z,y)

o Otherwise you could claim "Alex is very like Bob, and Alex is very like
Carl, but Bob is very unlike Carl"
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Distance Functions for Vectors

» Suppose two data points, both in Rd
o X = (Xxq,%o, ...,xd)
*y=uyz -y

» Euclidean distance: d(x,y) = \/Zle(xi —¥i)?

o Minkowski distance: d(x,y) = ﬁ/zidﬂ(xi — y;)P
e Euclidean distance: p = 2

o Manhattan distance: p = 1,d(x,y) = E;‘d=1|xi — ¥il

o “inf’-distance: p = oo,d(x,y) = max9=1|xi — il
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» Euclideandistance: V42 +32 =75

¢ Manhattan distance: 4+3 =7

o “inf’-distance: max{4,3} =4
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Some problems with Euclidean distance
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Curse of dimensionality



https://towardsdatascience.com/on-the-curse-of-dimensionality-b91a3a51268

Hamming Distance

¢ Manhattan distance is also called Hamming distance when all
features are binary

¢ Count the number of difference between two binary vectors

» Example, x,y € {0,1}}7

678911112131415 6|17
00100111001

1 2 3|4]5
01 1]0J0]|1
01 1110|000 O 1T 1)1y 1 1 1 0 1|1

d(x,y) =5
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Edit Distance

¢ Transform one of the objects into the other, and measure how
much effort it takes

x INTEx*xNTION

y *EXECUTION

d s s 1 s

d: deletion (cost 5) d(x,y) =5X1+3x1+1%x2=10
s: substitution (cost 1)
i: insertion (cost 2)
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Results of K-Means Clustering:

Image Clusters on intensity Clusters on color

K-means clustering using intensity alone and color alone



Clusters on color

K-means using color alone, 11 segments (clusters)



* Pictures from Mean Shift: A Robust Approach toward Feature Space Analysis, by D. Comaniciu and P. Meer http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html



1.5

1.0

0.5

0.0

-0.5

K-Means Algorithm
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Visualizing K-Means Clustering

22


https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

K-Means Algorithm

» Initialize k cluster centers, {c{, Cy, ..., Cx} , randomly
» Do

¢ Decide the cluster memberships of each data point, xX; by
assigning it to the nearest cluster center (cluster assignment)

n(i) = argmin;—, Hxl — CjHZ

¢ Adjust the cluster centers (center adjustment)

1
ENGEI0 =j}|i;l.)xi

» While any cluster center has been changed

23



K-Means: Step 1
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K-Means: Step 2
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K-Means: Step 3
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K-Means: Step 4
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K-Means: Step 5
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Questions

» Will different initialization lead to different results?
¢ Yes
¢ No
¢ Sometimes

» Will the algorithm always stop after some iteration?
¢ Yes
¢ No (we have to set a maximum number of iterations)
¢ Sometimes
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Formal Statement of the Clustering Problem

® Given n data points, {x{, X5, ..., X,} X € R®
® Find k cluster centers, {cy, C,, ..., Ci} ¢ € R?
® And assign each datapoint i to one cluster, (i) € {1, ..., k}

® Such that the averaged square distances from each datapoint to its
respective cluster center is small

mmZuxl ~ crol



Total distance

Clustering is NP-Hard

» Find k cluster centers,{cq, c,, ...,Cc;} CE Rd, and assign each
data point i to one cluster (i) € {1, ..., k}, to minimize

mmZuxl ~ crol

¢ A search problem over the space of discrete assignments

« For all n data point together, there are kN possibility
¢ The cluster assignment determines cluster centers, and vice versa

’
’
’
’
’
’
’

mMinimum
Global 7
minimum

-

Search space

32


https://en.wikipedia.org/wiki/NP-hardness

¢ For all N data point together, there are k n possibility

X = {A,B,C}
n=3 (data points)

k=2 clusters of two members

Cluster 1 Cluster 2



Convergence of K-Means

» Will kmeans objective oscillate?

mmiuxl - crol

» The minimum value of the objective is finite

» Eachiteration of kmeans algorithm decrease the objective
¢ Cluster assignment step decreases objective

o (1) = argminj=y,_x || 2 for each data point i

— Cap |
¢ Center adjustment step decreases objective

1 2
o Ci = Ty dim(i)=j Xi = argmmczm(i):jllxi — Cap |
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Time Complexity

® Assume computing distance between two
instances is O(d) where d is the dimensionality of
the vectors.

® Reassigning clusters for all datapoints:

» O(kn) distance computations (when there is one feature)
» O(knd) (when there is d features)

® Computing centroids: Each instance vector gets
added once to some centroid (Finding centroid for
each feature): O(nd).

® Assume these two steps are each done once for I
iterations: O(Iknd).

Slide credit: Ray Mooney. 35



How to Choose K?

Elbow method

Best Number of Clusters
at the “"Elbow”

Objective Function Value
l.e,, Distortion

T 1 1T T 1 1T
1 2 3 4 5 6 7

Number of Clusters

Distortion score: computing the sum of squared
distances from each point to its assigned center

Image credit: Dileka Madushan. 36
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