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Outline

• Overview 

• Gaussian Mixture Model

• The Expectation-Maximization Algorithm



Recap

Conditional probabilities:

𝑝 𝐴, 𝐵 = 𝑝 𝐴 𝐵 𝑝 𝐵 = 𝑝 𝐵 𝐴 𝑝(𝐴)

Bayes rule:

𝑝 𝐴|𝐵 =
𝑝(𝐴, 𝐵)

𝑝(𝐵)
=
𝑝 𝐵 𝐴 𝑝(𝐴)

𝑝(𝐵)

𝑝 𝐴 = 1 = σ𝑖=1
𝐾 𝑝(𝐴 = 1, 𝐵𝑖)=σ𝑖=1

𝐾 𝑝 𝐴 𝐵𝑖 𝑝(𝐵𝑖)



Tomorrow=Rainy Tomorrow=Cold P(Today)

Today=Rainy 4/9 2/9 [4/9 + 2/9] = 2/3

Today=Cold 2/9 1/9 [2/9 + 1/9] = 1/3

P(Tomorrow) [4/9 + 2/9] = 2/3 [2/9 + 1/9] = 1/3

P(Tomorrow = Rainy) = 



Gaussian Distribution

𝑁 𝜇, 𝜎 =
1

2𝜋𝜎2
𝑒
−

𝑥{1}−𝜇
2

2𝜎2

1-d Gaussian



𝒙 = 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … , 𝒙𝒅
𝑻



Is Gaussian Concave?



Outline

• Overview 

• Gaussian Mixture Model

• The Expectation-Maximization Algorithm



Hard Clustering Can Be Difficult

• Hard Clustering: K-Means, Hierarchical Clustering, DBSCAN



Towards Soft Clustering



This is an excerpt from the Python Data Science Handbook by Jake VanderPlas

http://shop.oreilly.com/product/0636920034919.do


Let’s run K-Means on the dataset



Let’s generate a new dataset and run K-Means



Let’s run GMM on the first dataset





Let’s do GMM on the second dataset







Initial Step



Final Step



Gaussian Recap



Mixture perspective – soft assignment

Let’s create a SINGLE pdf that combines all three Gaussians!!!!











Mixture perspective – soft assignment



Mixture perspective – Initialization

Initial Step

Final Step

p x = 𝜋0𝑁 𝑋 𝜇0, 𝜎0 + 𝜋1𝑁 𝑋 𝜇1, 𝜎1 + 𝜋2𝑁(𝑋|𝜇2, 𝜎2)



Mixture Models

• Formally a Mixture Model is the weighted sum of a number of 

pdfs where the weights are determined by a distribution,  

𝜋0 𝜋1 𝜋2 𝑥

What is f in GMM?



Mixture Models are Generative

• Generative simply means dealing with joint probability 𝑝 𝑥, 𝑧

Let’s say 𝑓(. ) is a Gaussian distribution

p x = 𝜋0𝑁 𝑋 𝜇0, 𝜎0 + 𝜋1𝑁 𝑋 𝜇1, 𝜎1 +⋯+ 𝜋𝑘𝑁(𝑋|𝜇𝑘 , 𝜎𝑘)

p x = 𝜋0𝑓0(𝑥) + 𝜋1𝑓1(𝑥) + ⋯+ 𝜋𝑘𝑓𝑘(𝑥)

𝑝 𝑥 =෍
𝑘
𝑁(𝑥|𝜇𝑘 , 𝜎𝑘)𝜋𝑘

𝑝 𝑥 =෍
𝑘
𝑝 𝑥 𝑧𝑘 𝑝(𝑧𝑘)

𝑝(𝑥) =෍
𝑘
𝑝(𝑥, 𝑧𝑘)

𝑧𝑘 is component 𝑘

https://en.wikipedia.org/wiki/Generative_model


What is soft assignment?

𝜋0 𝜋1 𝜋2 𝑥
𝑥

What is the probability of a datapoint 𝑥 in each component?

How many components we have here? 3

How many probability? 3

What is the sum value of the 3 probabilities for each datapoint? 1



Inferring Cluster Membership

• We have representations of the joint 𝑝(𝑥, 𝑧𝑛𝑘|𝜃) and the 

marginal, 𝑝(𝑥|𝜃)

• The conditional of 𝑝 𝑧𝑛𝑘 𝑥, 𝜃) can be derived using Bayes rule.

The responsibility that a mixture component takes for explaining an 

observation x.

𝑧𝑘
𝑧𝑘 𝑧𝑘

𝑧𝑗𝑧𝑗
𝑧𝑘



Why having “Latent variable”

• A variable can be unobserved (latent) because: 

it is an imaginary quantity meant to provide some simplified and 
abstractive view of the data generation process.

- e.g., speech recognition models, mixture models (soft clustering)…

it is a real-world object and/or phenomena, but difficult or impossible 
to measure

- e.g., the temperature of a star, causes of a disease, evolutionary ancestors …

it is a real-world object and/or phenomena, but sometimes wasn’t 
measured, because of faulty sensors, etc.

• Discrete latent variables can be used to partition/cluster data 
into sub-groups.

• Continuous latent variables (factors) can be used for 
dimensionality reduction (factor analysis, etc).



How about GMM for multimodal distribution?



Gaussian Mixture Model



𝜋0 𝜋1 𝜋2 𝑥

What are GMM parameters?

Mean 𝜇𝑘 Variance 𝜎𝑘 Size 𝜋𝑘

Marginal probability distribution

𝑝 𝑧𝑘|𝜃 = 𝜋𝑘

𝑝 𝑥|𝑧𝑘 , 𝜃 = 𝑁(𝑥|𝜇𝑘 , 𝜎𝑘)

Select a mixture component with probability 𝜋

Sample from that component’s Gaussian

p x|𝜃 =෍
𝑘
𝑝(𝑥, 𝑧𝑘|𝜃) =෍

𝑘
𝑝 𝑥 𝑧𝑘 , 𝜃 𝑝(𝑧𝑘|𝜃 ) =

𝜋𝑘𝑓𝑘(𝑥)

෍
𝑘
𝑁(𝑥|𝜇𝑘 , 𝜎𝑘)𝜋𝑘



Parameters’ definition

• Purpose: GMM is a clustering algorithm derived from probabilistic theory that uses soft-assignment, 
meaning that data points have probability of being associated/generated from K gaussians/clusters. 
This is as opposed to K-means where data points definitively are either from a cluster or they're not.

• Gaussian Parameters

• μ: Mean of each gaussian, can be compared to the K-means cluster centers

• Σ: Covariance matrix of each gaussian, which represents how dimensions vary between each other. If it's the 
covariance of a specific dimension with itself, it is just the standard deviation of that variable/dimension. This is 
in a DxD matrix (for each gaussian and every element Σi,j represents the covariance of dimension I with j. If you 
assume the dimensions are independent, then only the diagonals are non-zero.

• znk: Latent variable which isn't explicitly known, but tells us which gaussian each datapoint was generated from. 
z is binary, it either's 1 (point x came from gaussian k) or 0 (point x did not come from gaussian k)

• p(znk) = π: Mixing proportions/weights, which represent the fraction of data points that are generated 
from/associated with each gaussian. These sum to 1.

• N(Xn | μk, Σk): This term is the probability of some data point Xn occurring based on the assumption that 
it is generated from gaussian k. Mathematically, this Is equal to the likelihood (p(x|z,μk, Σk.)). Multiply 
this with the mixing weight π, and you get the joint distribution p(x=X_n,z=k).

• P(X): If you sum up all the N(Xn | μk, Σk)*π terms for each cluster, you get the probability of the entire 
data set occurring.

• γ(znk) or P(znk |xn): We call this term the "responsibility." It is the probability of z for “A” data point x, 
meaning that this is probability that point n is generated from gaussian k normalized by P(X), the 
probability of the entire data set occurring.



Well, we don’t know 𝜋𝑘 , 𝜇𝑘 , Σk
What should we do?

We use a method called “Maximum Likelihood Estimation” (MLE) 

to solve the problem.

argmax 𝑝 𝑥|𝜃 = 𝑝 𝑥 𝜋, 𝜇, Σ =ෑ

𝑛=1

𝑁

𝑝 𝑥𝑛|𝜃 =ෑ

𝑛=1

𝑁

෍

𝑘=0

𝐾

𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘 , Σ𝑘)

p x = p x|𝜃 =෍
𝑘
𝑝(𝑥, 𝑧𝑘|𝜃) =෍

𝑘
𝑝(𝑧𝑘|𝜃)𝑝 𝑥 𝑧𝑘, 𝜃 = ෍

𝑘=0

𝐾

𝜋𝑘𝑁(𝑥|𝜇𝑘, Σ𝑘)

Let’s identify a likelihood function, why?

Because we use likelihood function to optimize the probabilistic model 

parameters!



argmax 𝑝 𝑥 = 𝑝 𝑥 𝜋, 𝜇, Σ =ෑ

𝑛=1

𝑁

𝑝 𝑥𝑛|𝜃 =ෑ

𝑛=1

𝑁

෍

𝑘=0

𝐾

𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘 , Σ𝑘)

ln[𝑝 𝑥 ] = ln[𝑝 𝑥 𝜋, 𝜇, Σ ]

• As usual: Identify a likelihood function

• And set partials to zero…



)

Maximum Likelihood of a GMM

• Optimization of means.

𝑧𝑛𝑘

𝑧𝑛𝑘

𝑧𝑛𝑘



Maximum Likelihood of a GMM

• Optimization of covariance

𝑧𝑛𝑘
𝑧𝑛𝑘



Maximum Likelihood of a GMM

• Optimization of mixing term

(𝑧𝑛𝑘)

)



MLE of a GMM

(𝑧𝑛𝑘)

𝑧𝑛𝑘

𝑧𝑛𝑘



Outline

• Overview 

• Gaussian Mixture Model

• The Expectation-Maximization Algorithm



EM for GMMs

• E-step: Evaluate the Responsibilities 

𝑧𝑘



EM for GMMs

• M-Step: Re-estimate Parameters

𝑧𝑛𝑘

𝑧𝑛𝑘



Expectation Maximization

• Expectation Maximization (EM) is a general algorithm to deal with 

hidden variables.

• Two steps:

E-Step: Fill-in hidden values using inference

M-Step: Apply standard MLE method to estimate parameters

• EM always converges to a local minimum of the likelihood.



EM for Gaussian Mixture Model: Example

covariance_type="diag"

covariance_type="spherical"

covariance_type="full"

https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html


EM for Gaussian Mixture Model:



EM for Gaussian Mixture Model: Example



EM for Gaussian Mixture Model: Example



EM for Gaussian Mixture Model: Example



EM for Gaussian Mixture Model: Example



EM for Gaussian Mixture Model: Example



EM for Gaussian Mixture Model: Example



EM for Gaussian Mixture Model: Example



EM Algorithm for GMM (matrix form)

Book : C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

𝜸(𝒛𝒌)



EM Algorithm for GMM (matrix form)

Book : C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

𝜸(𝒛𝒏𝒌)

(𝒛𝒏𝒌)
𝒌

𝒌

𝒌

𝒌 𝒌

𝒌

𝜸(𝒛𝒏𝒌)

𝜸(𝒛𝒏𝒌)

𝜸(𝒛𝒏𝒌)

𝜸(𝒛𝒏𝒌)



Relationship to K-means

• K-means makes hard decisions. 

Each data point gets assigned to a single cluster.

• GMM/EM makes soft decisions.

Each data point can yield a posterior p(z|x)

• K-means is a special case of EM.



General form of EM

• Given a joint distribution over observed and latent variables: 

• Want to maximize:

1. Initialize parameters

2. E Step: Evaluate:

3. M-Step: Re-estimate parameters (based on expectation of complete-

data log likelihood)

1. Check for convergence of params or likelihood

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝐸𝑥𝑝[log 𝑝(𝑥, 𝑧𝑘|𝜃 ]





Maximizing this

Will lead to maximize this

𝑘

𝑘

𝜃|𝑥

𝑘

𝑘



𝑘

𝑘



𝑙 𝜃 𝑥 = log 𝑝 𝑥 𝜃 = log෍

𝑘

𝑝 𝑥, 𝑧𝑘 𝜃 ≥෍

𝑘

𝑞 𝑧𝑘 𝑥 log
𝑝 𝑥, 𝑧𝑘 𝜃

𝑞(𝑧𝑘|𝑥)

log ෍

𝑘

𝑝 𝑥, 𝑧𝑘 𝜃 = log ෍

𝑧

𝑝 𝑥 𝜃, 𝑧𝑘 ∗ 𝑝(𝑧𝑘|𝜃)

= 𝐥𝐨𝐠 𝑁 𝑥|𝜇0, Σ0 ∗ 𝜋0 +⋯+𝑁 𝑥|𝜇𝑘 , Σ𝑘 ∗ 𝜋0



𝑙 𝜃 𝑥 = log 𝑝 𝑥 𝜃 = log෍

𝑘

𝑝 𝑥, 𝑧𝑘 𝜃 ≥෍

𝑘

𝑞 𝑧𝑘 𝑥 log
𝑝 𝑥, 𝑧𝑘 𝜃

𝑞(𝑧𝑘|𝑥)

෍

𝑘

𝑞 𝑧𝑘 𝑥 log
𝑝 𝑥, 𝑧𝑘 𝜃

𝑞(𝑧𝑘|𝑥)
=

𝐶0 log
1

𝐶0
∗ 𝑁 𝑥|𝜇0, Σ0 ∗ 𝜋0 +⋯+ 𝐶𝑘 log

1

𝐶𝑘
∗ 𝑁 𝑥|𝜇𝑘 , Σ𝑘 ∗ 𝜋𝑘

𝑞 𝑧𝑘 𝑥 = 𝐶𝑘 ⇒ It is given to us



𝑙 𝑥 𝜃

𝜃



𝑙 𝜃 𝑥 = log 𝑝 𝑥 𝜃 = log෍

𝑧

𝑝 𝑥, 𝑧 𝜃 ≥෍

𝑧

𝑞 𝑧 𝑥 log
𝑝 𝑥, 𝑧 𝜃

𝑞(𝑧|𝑥)



https://www.dropbox.com/

scl/fi/j0nmxf654bbluf3zowp

78/EM-maximization-and-

equality.mp4?rlkey=wlua7l

5r88kdtydjoru7qc6f6&st=5

h7rbts6&dl=0

https://www.dropbox.com/scl/fi/j0nmxf654bbluf3zowp78/EM-maximization-and-equality.mp4?rlkey=wlua7l5r88kdtydjoru7qc6f6&st=5h7rbts6&dl=0
https://www.dropbox.com/scl/fi/j0nmxf654bbluf3zowp78/EM-maximization-and-equality.mp4?rlkey=wlua7l5r88kdtydjoru7qc6f6&st=5h7rbts6&dl=0
https://www.dropbox.com/scl/fi/j0nmxf654bbluf3zowp78/EM-maximization-and-equality.mp4?rlkey=wlua7l5r88kdtydjoru7qc6f6&st=5h7rbts6&dl=0
https://www.dropbox.com/scl/fi/j0nmxf654bbluf3zowp78/EM-maximization-and-equality.mp4?rlkey=wlua7l5r88kdtydjoru7qc6f6&st=5h7rbts6&dl=0
https://www.dropbox.com/scl/fi/j0nmxf654bbluf3zowp78/EM-maximization-and-equality.mp4?rlkey=wlua7l5r88kdtydjoru7qc6f6&st=5h7rbts6&dl=0
https://www.dropbox.com/scl/fi/j0nmxf654bbluf3zowp78/EM-maximization-and-equality.mp4?rlkey=wlua7l5r88kdtydjoru7qc6f6&st=5h7rbts6&dl=0


Xi𝜇𝑖𝑛(𝑋𝑖)

𝜇𝑜𝑢𝑡2(𝑋𝑖)

𝜇𝑜𝑢𝑡1(𝑋𝑖)

𝜇𝑜𝑢𝑡
𝑚𝑖𝑛 𝑋𝑖 = min{𝜇𝑜𝑢𝑡2 𝑋𝑖 , 𝜇𝑜𝑢𝑡1(𝑋𝑖)}

Silhouette 

Coefficient



Silhouette Coefficient

92

The Silhouette Coefficient for clustering C:

SC close to 1 implies a good clustering (Points are close to their own 

clusters but far from other clusters)



Take-Home Messages

• The generative process of Gaussian Mixture Model

• Inferring cluster membership based on a learned GMM

• The general idea of Expectation-Maximization

• Expectation-Maximization for GMM

• Silhouette Coefficient


	Slide 1: HW2. Start early. Otherwise you can’t finish
	Slide 2: Gaussian Mixture Model
	Slide 3
	Slide 4: Outline
	Slide 5
	Slide 6
	Slide 7: Gaussian Distribution
	Slide 8
	Slide 9: Is Gaussian Concave?
	Slide 10: Outline
	Slide 11: Hard Clustering Can Be Difficult
	Slide 12: Towards Soft Clustering
	Slide 13
	Slide 14: Let’s run K-Means on the dataset
	Slide 15: Let’s generate a new dataset and run K-Means
	Slide 16: Let’s run GMM on the first dataset
	Slide 17
	Slide 18: Let’s do GMM on the second dataset
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 38: Mixture Models
	Slide 41: Mixture Models are Generative
	Slide 42: What is soft assignment?
	Slide 45: Inferring Cluster Membership
	Slide 46: Why having “Latent variable”
	Slide 51: How about GMM for multimodal distribution?
	Slide 52: Gaussian Mixture Model
	Slide 53
	Slide 54: Parameters’ definition
	Slide 58: Well, we don’t know pi sub k ,mu sub k ,cap sigma sub k What should we do?
	Slide 59
	Slide 60: Maximum Likelihood of a GMM
	Slide 61: Maximum Likelihood of a GMM
	Slide 62: Maximum Likelihood of a GMM
	Slide 63: MLE of a GMM
	Slide 64: Outline
	Slide 65: EM for GMMs
	Slide 66: EM for GMMs
	Slide 67: Expectation Maximization
	Slide 68: EM for Gaussian Mixture Model: Example
	Slide 69: EM for Gaussian Mixture Model:
	Slide 70: EM for Gaussian Mixture Model: Example
	Slide 71: EM for Gaussian Mixture Model: Example
	Slide 72: EM for Gaussian Mixture Model: Example
	Slide 73: EM for Gaussian Mixture Model: Example
	Slide 74: EM for Gaussian Mixture Model: Example
	Slide 75: EM for Gaussian Mixture Model: Example
	Slide 76: EM for Gaussian Mixture Model: Example
	Slide 77: EM Algorithm for GMM (matrix form)
	Slide 78: EM Algorithm for GMM (matrix form)
	Slide 79: Relationship to K-means
	Slide 80: General form of EM
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 90
	Slide 91: Silhouette Coefficient
	Slide 92: Silhouette Coefficient
	Slide 93: Take-Home Messages

