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Outline

• Overview 

• Gaussian Mixture Model

• The Expectation-Maximization Algorithm



Recap

Conditional probabilities:

𝑝 𝐴, 𝐵 = 𝑝 𝐴 𝐵 𝑝 𝐵 = 𝑝 𝐵 𝐴 𝑝(𝐴)

Bayes rule:

𝑝 𝐴|𝐵 =
𝑝(𝐴, 𝐵)

𝑝(𝐵)
=
𝑝 𝐵 𝐴 𝑝(𝐴)

𝑝(𝐵)

𝑝 𝐴 = 1 = σ𝑖=1
𝐾 𝑝(𝐴 = 1, 𝐵𝑖)=σ𝑖=1

𝐾 𝑝 𝐴 𝐵𝑖 𝑝(𝐵𝑖)



Tomorrow=Rainy Tomorrow=Cold P(Today)

Today=Rainy 4/9 2/9 [4/9 + 2/9] = 2/3

Today=Cold 2/9 1/9 [2/9 + 1/9] = 1/3

P(Tomorrow) [4/9 + 2/9] = 2/3 [2/9 + 1/9] = 1/3

P(Tomorrow = Rainy) = 



Gaussian Distribution

𝑁 𝜇, 𝜎 =
1

2𝜋𝜎2
𝑒
−

𝑥{1}−𝜇
2

2𝜎2

1-d Gaussian



𝒙 = 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … , 𝒙𝒅
𝑻



Is Gaussian Concave?



Outline

• Overview 

• Gaussian Mixture Model

• The Expectation-Maximization Algorithm



Hard Clustering Can Be Difficult

• Hard Clustering: K-Means, Hierarchical Clustering, DBSCAN



Towards Soft Clustering



This is an excerpt from the Python Data Science Handbook by Jake VanderPlas

http://shop.oreilly.com/product/0636920034919.do


Let’s run K-Means on the dataset



Let’s generate a new dataset and run K-Means



Let’s run GMM on the first dataset





Let’s do GMM on the second dataset







Initial Step



Final Step



Gaussian Recap



Mixture perspective – soft assignment

Let’s create a SINGLE pdf that combines all three Gaussians!!!!



Mixture perspective – soft assignment



Mixture perspective – Initialization

Initial Step

Final Step

p x = 𝜋0𝑁 𝑋 𝜇0, 𝜎0 + 𝜋1𝑁 𝑋 𝜇1, 𝜎1 + 𝜋2𝑁(𝑋|𝜇2, 𝜎2)



Maximizing Likelihood

p x|𝜋, 𝜇, 𝜎 = p x|𝜃 = 𝑝(𝑥)
= 𝜋0𝑁 𝑋 𝜇0, 𝜎0 + 𝜋1𝑁 𝑋 𝜇1, 𝜎1 + 𝜋2𝑁(𝑋|𝜇2, 𝜎2)

𝜋, 𝜇, 𝜎 ∈ 𝜃



𝒁𝒌 Math Notation

p x = 𝜋0𝑁 𝑋 𝜇0, 𝜎0 + 𝜋1𝑁 𝑋 𝜇1, 𝜎1 + 𝜋2𝑁(𝑋|𝜇2, 𝜎2)



How can we find the probability of each data point in each cluster now? 



Mixture Models

• Formally a Mixture Model is the weighted sum of a number of 

pdfs where the weights are determined by a distribution,  

𝜋0 𝜋1 𝜋2 𝑥

What is f in GMM?



Mixture Models are Generative

• Generative simply means dealing with joint probability 𝑝 𝑥, 𝑧

Let’s say 𝑓(. ) is a Gaussian distribution

p x = 𝜋0𝑁 𝑋 𝜇0, 𝜎0 + 𝜋1𝑁 𝑋 𝜇1, 𝜎1 +⋯+ 𝜋𝑘𝑁(𝑋|𝜇𝑘 , 𝜎𝑘)

p x = 𝜋0𝑓0(𝑥) + 𝜋1𝑓1(𝑥) + ⋯+ 𝜋𝑘𝑓𝑘(𝑥)

𝑝 𝑥 =
𝑘
𝑁(𝑥|𝜇𝑘 , 𝜎𝑘)𝜋𝑘

𝑝 𝑥 =
𝑘
𝑝 𝑥 𝑧𝑘 𝑝(𝑧𝑘)

𝑝(𝑥) =
𝑘
𝑝(𝑥, 𝑧𝑘)

𝑧𝑘 is component 𝑘

https://en.wikipedia.org/wiki/Generative_model


What is soft assignment?

𝜋0 𝜋1 𝜋2 𝑥
𝑥

What is the probability of a datapoint 𝑥 in each component?

How many components we have here? 3

How many probability? 3

What is the sum value of the 3 probabilities for each datapoint? 1



Inferring Cluster Membership

• We have representations of the joint 𝑝(𝑥, 𝑧𝑛𝑘|𝜃) and the 

marginal, 𝑝(𝑥|𝜃)

• The conditional of 𝑝 𝑧𝑛𝑘 𝑥, 𝜃) can be derived using Bayes rule.

The responsibility that a mixture component takes for explaining an 

observation x.

𝑧𝑘
𝑧𝑘 𝑧𝑘

𝑧𝑗𝑧𝑗
𝑧𝑘



Why having “Latent variable”

• A variable can be unobserved (latent) because: 

it is an imaginary quantity meant to provide some simplified and 
abstractive view of the data generation process.

- e.g., speech recognition models, mixture models (soft clustering)…

it is a real-world object and/or phenomena, but difficult or impossible 
to measure

- e.g., the temperature of a star, causes of a disease, evolutionary ancestors …

it is a real-world object and/or phenomena, but sometimes wasn’t 
measured, because of faulty sensors, etc.

• Discrete latent variables can be used to partition/cluster data 
into sub-groups.

• Continuous latent variables (factors) can be used for 
dimensionality reduction (factor analysis, etc).



How about GMM for multimodal distribution?



Gaussian Mixture Model



𝜋0 𝜋1 𝜋2 𝑥

What are GMM parameters?

Mean 𝜇𝑘 Variance 𝜎𝑘 Size 𝜋𝑘

Marginal probability distribution

𝑝 𝑧𝑘|𝜃 = 𝜋𝑘

𝑝 𝑥|𝑧𝑘 , 𝜃 = 𝑁(𝑥|𝜇𝑘 , 𝜎𝑘)

Select a mixture component with probability 𝜋

Sample from that component’s Gaussian

p x|𝜃 =
𝑘
𝑝(𝑥, 𝑧𝑘|𝜃) =

𝑘
𝑝 𝑥 𝑧𝑘 , 𝜃 𝑝(𝑧𝑘|𝜃 ) =

𝜋𝑘𝑓𝑘(𝑥)


𝑘
𝑁(𝑥|𝜇𝑘 , 𝜎𝑘)𝜋𝑘



Parameters’ definition

• Purpose: GMM is a clustering algorithm derived from probabilistic theory that uses soft-assignment, 
meaning that data points have probability of being associated/generated from K gaussians/clusters. 
This is as opposed to K-means where data points definitively are either from a cluster or they're not.

• Gaussian Parameters

• μ: Mean of each gaussian, can be compared to the K-means cluster centers

• Σ: Covariance matrix of each gaussian, which represents how dimensions vary between each other. If it's the 
covariance of a specific dimension with itself, it is just the standard deviation of that variable/dimension. This is 
in a DxD matrix (for each gaussian and every element Σi,j represents the covariance of dimension I with j. If you 
assume the dimensions are independent, then only the diagonals are non-zero.

• znk: Latent variable which isn't explicitly known, but tells us which gaussian each datapoint was generated from. 
z is binary, it either's 1 (point x came from gaussian k) or 0 (point x did not come from gaussian k)

• p(znk) = π: Mixing proportions/weights, which represent the fraction of data points that are generated 
from/associated with each gaussian. These sum to 1.

• N(Xn | μk, Σk): This term is the probability of some data point Xn occurring based on the assumption that 
it is generated from gaussian k. Mathematically, this Is equal to the likelihood (p(x|z,μk, Σk.)). Multiply 
this with the mixing weight π, and you get the joint distribution p(x=X_n,z=k).

• P(X): If you sum up all the N(Xn | μk, Σk)*π terms for each cluster, you get the probability of the entire 
data set occurring.

• γ(znk) or P(znk |xn): We call this term the "responsibility." It is the probability of z for “A” data point x, 
meaning that this is probability that point n is generated from gaussian k normalized by P(X), the 
probability of the entire data set occurring.



Well, we don’t know 𝜋𝑘 , 𝜇𝑘 , Σk
What should we do?

We use a method called “Maximum Likelihood Estimation” (MLE) 

to solve the problem.

argmax 𝑝 𝑥|𝜃 = 𝑝 𝑥 𝜋, 𝜇, Σ =ෑ

𝑛=1

𝑁

𝑝 𝑥𝑛|𝜃 =ෑ

𝑛=1

𝑁



𝑘=0

𝐾

𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘 , Σ𝑘)

p x = p x|𝜃 =
𝑘
𝑝(𝑥, 𝑧𝑘|𝜃) =

𝑘
𝑝(𝑧𝑘|𝜃)𝑝 𝑥 𝑧𝑘 , 𝜃 = 

𝑘=0

𝐾

𝜋𝑘𝑁(𝑥|𝜇𝑘, Σ𝑘)

Let’s identify a likelihood function, why?

Because we use likelihood function to optimize the probabilistic model 

parameters!



argmax 𝑝 𝑥 = 𝑝 𝑥 𝜋, 𝜇, Σ =ෑ

𝑛=1

𝑁

𝑝 𝑥𝑛|𝜃 =ෑ

𝑛=1

𝑁



𝑘=0

𝐾

𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘 , Σ𝑘)

ln[𝑝 𝑥 ] = ln[𝑝 𝑥 𝜋, 𝜇, Σ ]

• As usual: Identify a likelihood function

• And set partials to zero…



)

Maximum Likelihood of a GMM

• Optimization of means.

𝑧𝑛𝑘

𝑧𝑛𝑘

𝑧𝑛𝑘



Maximum Likelihood of a GMM

• Optimization of covariance

𝑧𝑛𝑘
𝑧𝑛𝑘



Maximum Likelihood of a GMM

• Optimization of mixing term

(𝑧𝑛𝑘)

)



MLE of a GMM

(𝑧𝑛𝑘)

𝑧𝑛𝑘

𝑧𝑛𝑘



Outline

• Overview 

• Gaussian Mixture Model

• The Expectation-Maximization Algorithm



EM for GMMs

• E-step: Evaluate the Responsibilities 

𝑧𝑘



EM for GMMs

• M-Step: Re-estimate Parameters

𝑧𝑛𝑘

𝑧𝑛𝑘



Expectation Maximization

• Expectation Maximization (EM) is a general algorithm to deal with 

hidden variables.

• Two steps:

E-Step: Fill-in hidden values using inference

M-Step: Apply standard MLE method to estimate parameters

• EM always converges to a local minimum of the likelihood.



EM for Gaussian Mixture Model: Example

covariance_type="diag"

covariance_type="spherical"

covariance_type="full"

https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html


EM for Gaussian Mixture Model:



EM for Gaussian Mixture Model: Example



EM for Gaussian Mixture Model: Example



EM for Gaussian Mixture Model: Example



EM for Gaussian Mixture Model: Example



EM for Gaussian Mixture Model: Example



EM for Gaussian Mixture Model: Example



EM for Gaussian Mixture Model: Example



EM Algorithm for GMM (matrix form)

Book : C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

𝜸(𝒛𝒌)



EM Algorithm for GMM (matrix form)

Book : C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

𝜸(𝒛𝒏𝒌)

(𝒛𝒏𝒌)
𝒌

𝒌

𝒌

𝒌 𝒌

𝒌

𝜸(𝒛𝒏𝒌)

𝜸(𝒛𝒏𝒌)

𝜸(𝒛𝒏𝒌)

𝜸(𝒛𝒏𝒌)



Relationship to K-means

• K-means makes hard decisions. 

Each data point gets assigned to a single cluster.

• GMM/EM makes soft decisions.

Each data point can yield a posterior p(z|x)

• K-means is a special case of EM.



General form of EM

• Given a joint distribution over observed and latent variables: 

• Want to maximize:

1. Initialize parameters

2. E Step: Evaluate:

3. M-Step: Re-estimate parameters (based on expectation of complete-

data log likelihood)

1. Check for convergence of params or likelihood

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝐸𝑥𝑝[log 𝑝(𝑥, 𝑧𝑘|𝜃 ]



Maximizing this

Will lead to maximize this

𝑘

𝑘

𝜃|𝑥

𝑘

𝑘



𝑘

𝑘



𝑙 𝜃 𝑥 = log 𝑝 𝑥 𝜃 = log

𝑘

𝑝 𝑥, 𝑧𝑘 𝜃 ≥

𝑘

𝑞 𝑧𝑘 𝑥 log
𝑝 𝑥, 𝑧𝑘 𝜃

𝑞(𝑧𝑘|𝑥)

log 

𝑘

𝑝 𝑥, 𝑧𝑘 𝜃 = log 

𝑧

𝑝 𝑥 𝜃, 𝑧𝑘 ∗ 𝑝(𝑧𝑘|𝜃)

= 𝐥𝐨𝐠 𝑁 𝑥|𝜇0, Σ0 ∗ 𝜋0 +⋯+𝑁 𝑥|𝜇𝑘 , Σ𝑘 ∗ 𝜋0



𝑙 𝜃 𝑥 = log 𝑝 𝑥 𝜃 = log

𝑘

𝑝 𝑥, 𝑧𝑘 𝜃 ≥

𝑘

𝑞 𝑧𝑘 𝑥 log
𝑝 𝑥, 𝑧𝑘 𝜃

𝑞(𝑧𝑘|𝑥)



𝑘

𝑞 𝑧𝑘 𝑥 log
𝑝 𝑥, 𝑧𝑘 𝜃

𝑞(𝑧𝑘|𝑥)
=

𝐶0 log
1

𝐶0
∗ 𝑁 𝑥|𝜇0, Σ0 ∗ 𝜋0 +⋯+ 𝐶𝑘 log

1

𝐶𝑘
∗ 𝑁 𝑥|𝜇𝑘 , Σ𝑘 ∗ 𝜋𝑘

𝑞 𝑧𝑘 𝑥 = 𝐶𝑘 ⇒ It is given to us



𝑙 𝑥 𝜃

𝜃



𝑙 𝜃 𝑥 = log 𝑝 𝑥 𝜃 = log

𝑧

𝑝 𝑥, 𝑧 𝜃 ≥

𝑧

𝑞 𝑧 𝑥 log
𝑝 𝑥, 𝑧 𝜃

𝑞(𝑧|𝑥)



https://www.dropbox.com/

scl/fi/j0nmxf654bbluf3zowp

78/EM-maximization-and-

equality.mp4?rlkey=wlua7l

5r88kdtydjoru7qc6f6&st=5

h7rbts6&dl=0

https://www.dropbox.com/scl/fi/j0nmxf654bbluf3zowp78/EM-maximization-and-equality.mp4?rlkey=wlua7l5r88kdtydjoru7qc6f6&st=5h7rbts6&dl=0
https://www.dropbox.com/scl/fi/j0nmxf654bbluf3zowp78/EM-maximization-and-equality.mp4?rlkey=wlua7l5r88kdtydjoru7qc6f6&st=5h7rbts6&dl=0
https://www.dropbox.com/scl/fi/j0nmxf654bbluf3zowp78/EM-maximization-and-equality.mp4?rlkey=wlua7l5r88kdtydjoru7qc6f6&st=5h7rbts6&dl=0
https://www.dropbox.com/scl/fi/j0nmxf654bbluf3zowp78/EM-maximization-and-equality.mp4?rlkey=wlua7l5r88kdtydjoru7qc6f6&st=5h7rbts6&dl=0
https://www.dropbox.com/scl/fi/j0nmxf654bbluf3zowp78/EM-maximization-and-equality.mp4?rlkey=wlua7l5r88kdtydjoru7qc6f6&st=5h7rbts6&dl=0
https://www.dropbox.com/scl/fi/j0nmxf654bbluf3zowp78/EM-maximization-and-equality.mp4?rlkey=wlua7l5r88kdtydjoru7qc6f6&st=5h7rbts6&dl=0


Xi𝜇𝑖𝑛(𝑋𝑖)

𝜇𝑜𝑢𝑡2(𝑋𝑖)

𝜇𝑜𝑢𝑡1(𝑋𝑖)

𝜇𝑜𝑢𝑡
𝑚𝑖𝑛 𝑋𝑖 = min{𝜇𝑜𝑢𝑡2 𝑋𝑖 , 𝜇𝑜𝑢𝑡1(𝑋𝑖)}

Silhouette 

Coefficient



Silhouette Coefficient

87

The Silhouette Coefficient for clustering C:

SC close to 1 implies a good clustering (Points are close to their own 

clusters but far from other clusters)



Take-Home Messages

• The generative process of Gaussian Mixture Model

• Inferring cluster membership based on a learned GMM

• The general idea of Expectation-Maximization

• Expectation-Maximization for GMM

• Silhouette Coefficient
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