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Density-Based Clustering

® Basic Idea

. Clusters are dense regions in the data

space, separated by regions of lower | , }:j.-' iy 1.
density LM
. ;' it 'L.J"I ...
. A cluster is defined as a maximal set of y O
. . i s b m i :-1:-'
density-connected points gt A
. Detect arbitrarily shaped clusters 3

® Method

. DBSCAN (Density-Based Spatial
Clustering of Applications with Noise )
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High Density v.s. Low Density

® Two parameters

MinPts. Minimum number of points in the Eps-neighborhood of a
point

® High density: e-Neighborhood of an object contains at least
MinPts of objects

Density of p is low
Density of q is high




Core Points, Border Points, and Outliers

/ © Outlier | Given £and MinPts,
TN categorize the objects into
Border S0, OO O three exclusive groups.
K‘H@;@* .: O O
@ @ o o
L A point is a core point if it has more than a
Core @ O specified number of points (MinPts) within
O O Eps—These are points that are at the
O interior of a cluster.

. . A border point has fewer than MinPts
€ = lunit, MinPts =5 within Eps, but is in the neighborhood
of a core point.

A noise point is any point that is not a
core point nor a border point.



Practice:

e= 1 unit .
MinPts = 5 - 'y
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10, MinPts =4
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Density-based related points

® Direct density reachability:

. An object p Is directly density-reachable from object q if (1) g is a core
object; and (2) p is in q’s €-neighborhood

° ' MinPts =5
[ ]
o

Eps=1cm

Density- Density-
Reachable Connected

Directly Density-
Reachable
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Density-based related points

® Density reachability:

. A point p is density-reachable from a point q if there is a chain of
points ps1, ..., Pn, P1 =(, pPn = p such that pi+1 is directly density-
reachable from pi

o P1=q =2>pP2=2... ?pPn=q

o
‘ MinPts =5

® s Eps=1lcm

Density- Density-
Reachable Connected

Directly Density-
Reachable
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Density-based related points

® Density connectivity:

. A point p is density-connected to a point q if there is a point o such
that both p and g are density-reachable from o

o
‘ MinPts =5
O

® Eps=1cm

Density- Density-
Reachable Connected

Directly Density-
Reachable
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The DBSCAN Algorithm

DBSCAN@ eps, MinPts)
—_—

C=0 ¢ ..
for each unvisited point P in dataset X ¢ e
mar as visited
NeighborPts = regionQuery(P, eps)l
if sizeof(NeighborPts) < MinPts
mark P as NOISE v/ _
else —5coe
Wste@, NeighborPts, C, eps, MinPts)k o °
T = next cluster © 0 o o
©e
expandCluster(P, NeighborPts, C, eps, MinPts) ©
ad
for eachpoint P' in NeighborPts
if(P)/is not visited
P!/as visited
eighborPts' = re_gant@LLE;ﬂps.)x
if siz ' S==MinrPts
NeighborPts = NeighborPts joined with NeighborPts‘x e o
if P is not yet member of any cluster °e
add P' to cluster C © o

kegionQuery(P, eps) return all points within P's eps-neighborhood (including Fﬂ

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/ 16



https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/
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DBSCAN is Sensitive to Parameters

Figure 8. DBScan
results for DS1 with
MinPts at 4 and Eps at
(a) 0.5 and (b) 0.4.

Figure 9. DBScan
results for DS2 with
MinPts at 4 and Eps at
(@a)5.0, (b) 3.5, and
(c) 3.0.

(a) (b) (c)

Image Credit: George Karypis.



High value (what will happen?) Low value (what will happen?)

A large part of data won't be

Clusters will merge and the majority clustered and considered as
of data points will be in the same outliers. Because, they won't satisfy
cluster the number of pints to create a

dense region

Do we need to define the

number of clusters in Nope
DBSCAN?



Minimum number of Points (MinPts)

Every point will be a cluster on its own, Why?

MinPts = 17 Don’t forget, in DBSCAN, a core point is counted as
' the number of neighboring points

N ABCD

MinPts = 27 £ —AB
Ce®e oD

g

A B C D

Dendogram cut at height ¢

So, MinPts should be at Ieas@

d‘,‘mcn /0N

Rule of thumb-MinPts > D+1;
For\no@//dglg => MinPts % 2*D/(yield more significant clusters)



How about Eps? (Elbow effect)

* |dea is that for points in a cluster, their kt" nearest
neighbors are at roughly the same distance

e Noise points have the k" nearest neighbor at farther

distance
e So, plot sorted distance of every point to its kt" nearest
neighbor -
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Points Sorted According to Distance of 4th Nearest Neighbor

Here we have 3000 points and x-axis shows just a point index.
Point indices are sorted in ascending order based on their 41" nearest neighbor distance
21



Elbow effect another example
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(a) k-distance plots

Erich Schuber et al
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(b) k-distance plots (magnified region)

minPts often does not have a
significant impact on the clustering

results


http://www.ccs.neu.edu/home/vip/teach/DMcourse/2_cluster_EM_mixt/notes_slides/revisitofrevisitDBSCAN.pdf

When DBSCAN Works Well

® Robust to noise

® Can detect arbitrarily-shaped clusters

Clusters

Original Points
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When DBSCAN Does NOT Work Well

® Cannot handle varying densities

® Sensitive to parameters—hard to
determine the best setting of

parameters

Original Points

(MinPts=4, Eps=9.75)
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Take-Home Messages

The basic idea of density-based clustering

The two important parameters and the definitions of
neighborhood and density in DBSCAN

Core, border and outlier points
DBSCAN algorithm
DBSCAN's pros and cons
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Clustering Evaluation

® Internal measures for clustering evaluation
. Elbow method
. ollhouette Coefficient
. Graph-based measures (Beta-CV and Normalized cut)

. Davies-Bouldin Index

We want intra-cluster datapoints to be as close as possible to
each other and inter-clusters to be as far as possible from each
other

26



The Davies-Bouldin Index

thte

Q.
Let 1; denote the cluster mean 6}1 = 'J 3

a®
"5 T oens
'\, .
i = n E i .
XjEC,' o ®
.ra

Let o, denote the dispersion or spread of the points around the cluster mean
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The Davies—Bouldin measure for a pair of clusters C; and C; is defined as the
ratio Dy, D2,05 (~ Dy =ma OB 1, DY => DR, - FP1v B2
Calculate the DB 0f O T Oy

r o — , = .. “ﬂ"ﬁzu
from other clusters DB" - 5(,u,-, Mj) Dl N a]gDBlJ

a lower value means that the

clustering is better .
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