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Clustering Evaluation

® Clustering evaluation aims at quantifying the goodness or
quality of the clustering.

® Two main categories of measures:
. External measures: employ external ground-truth

. Internal measures: derive goodness from the data itself



Outline

® External measures for clustering evaluation <«
- Matching-based measures
. Entropy-based measures

. Palrwise measures

® Internal measures for clustering evaluation
. Graph-based measures
. Davies-Bouldin Index

. Silhouette Coefficient



External Measures

External measures assume that the correct or ground-truth clustering is
known a priori, which is used to evaluate a given clustering.

Let D = {x;}/_, be a dataset consisting of n points in a d-dimensional space,
partitioned into k clusters. Let y; € {1,2,..., k} denote the ground-truth
cluster membership or label information for each point.

The ground-truth clustering is givenas 7 = { T4, Io,..., Tx}, where the cluster
T; consists of all the points with label j, i.e., T; = {x; € D|y; = j}. We referto T
as the ground-truth partitioning, and to each T; as a partition.

Let C = {Cq,..., C/} denote a clustering of the same dataset into r clusters,
obtained via some clustering algorithm, and let y; € {1,2, ..., r} denote the
cluster label for X;.

\ O
s the number of grou truth partltlons@ andOis the number
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@ Number of data points in cluster i which are also in ground truth partition j




Matching-Based Measures (l): Purity

® Purity: Quantifies the extent that cluster C; contains points only
from one (ground truth) partition:
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What is purity value for a perfect clustering? Purity = 1
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Two clusters may be matched to the same partition

C1 is more paired with T3 C1 is more paired with T2
C2 is more paired with T2 C2 is more paired with T2
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purity = (30 + 20 + 25)/100 = 0.75 ourity = (30 + 20 + 25)/100 = 0.75
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Maximum weight match@ Only one cluster can match one partition

—

Ex. If C1 is more paired with T2 THEN C2 and C3 cannot paired with T2
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Matching-Based Measures (ll): Maximum Matching

® Drawback of purity: two clusters may be matched to the same
partition.

® Maximum matching: the maximum purity under the one-to-
one matching constraint.

. Examine all possible pairwise matching between C and T and choose

the best (the maximum)
M
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In a general context: Precision, Recall and Accuracy

Correct Wrong Po sitive = cat
prediction prediction

Nca a "t‘; Ve = (}fj

Number of predicted “positive” labeled data = True Positive + False Positive

Number of predicted “negative” labeled data = True Negative+ False Negative

O.C.-Wa\ Po SHWC'
____Actual
. True Positive True Positive
Precision = - or — - .
Predicted Results True Positive + False Positive / False
{
predicted Poitve Positive Positive
True Positive True Positive Predicted «
Recall = or — :
Actual Results True Positive + False Negative True
Negative
True Positive + True Negative
Accuracy =

Total

False positive is also called false alarm



Matching-Based Measures (ll): F-Measure

® Precision: which measure quality, is the same as purity:

. How precisely does each cluster represent the ground truth?

rec; = 1 mkax{n } = i

prec: = n; j=1 0,
® . Njj Njj
Recall: measures completeness recall; = TS m
i Ji

. How completely does each cluster recover the ground truth?

The Fraction of point in partition T; shred in common
with cluster C;

p _ 6
rec; =
6 Ground Truth
Recall, = 10 d

Cluster C,




Precision and Recall

(Precision here is same as the purity)

Precision:

or r 1 s
oo mow @
precz = 20/25;
i
Recall:
recallr = 30/35;

recallz = 20/40;

recalls = 25/25 k



https://en.wikipedia.org/wiki/Precision_and_recall

Matching-Based Measures (ll): F-Measure

® F-Measure: the harmonic mean of precision and recall

. Take into account both precision and completeness

Z— - 5 % 2 - prec; - recall; 2 nj

1 1 N ,
bee T Tecall prec; + recall, n; + m

The F-measure for the clustering C is the mean of clusterwise F-measure values:
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Entropy-Based Measures (l): Conditional Entropy

Amount of information orderness in different partitions

® The entropy for clustering C and partition T is

r K
H(C) = — > pc,log pc H(T) = - _prlogpr,
=1 =1

where pg, = % and pr =

[ N
i.e., The probability of cluster C; €., The probability of grouncvj‘:Jruth f] ney
Ny =My + Nip + -+ Ny P(T—, C' P(TC N n = ——----'CJ
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® Conditional Entropy: The cluster-specific entropy, namely the

COﬂ(L’[Ié)na| entropy of T with respect to cluster C;:
Tl<y) Pr<) 1(T1 <)

Niji Nijj
(C) \ }-(T\ 2) H(T|C;) = — Z (Fi |09 (%) 2ij4____Ground truth (T)

How ground truth is distributed within each cluster Cluster (C)

f
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Entropy-Based Measures (l): Conditional Entropy

® The conditional entropy of T given clustering C is defined as the
weighted sum: Tlu

H(T|C) )= Zn’Hﬂ TYp,jlog(p”

=1 j=1 Pc; n;

o H(C,T) @ n

The more clusters members are split into different partitions, the higher the conditional entropy
(not a desirable condition and the max value is log k )

H(7|C) = 0 if and only if 7 is completely determined by C, corresponding to
the ideal clustering. If C and 7 are independent of each other, then

H(T|C) = H(T).

HIVIX) = ) pGOH(YIX = x)

Fresh your memory: XeX
H(Y|X) = H(X,Y) — H(X)
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=1 j=1 =1 j=
r k r
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Entropy-Based Measures (I): Mutual Information

The mutual information tries to quantify the amount of shared information
between the clustering C and partitioning 7, and it is defined as

r K

H) 5, O I(C,T)>:>:P;j|09( < )—H(T)—H(TIC)

=1 j=1 Pc; - P,

When C and 7 are independent then p; = pc, - pr,, and thus /(C,T) = 0.
However, there is no upper bound on the mutual information.

N\

H(X) We should do something about this
H(X]Y) I(X,Y) H(Y|X)

H(Y)

We measure the dependency between the observed joint probability p;; of C and T, and
the expected joint probability p.;. pr; under the independence assumption
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Entropy-Based Measures (I): Mutual Information

The normalized mutual information (NMI) is defined as the geometric mean:

e,y e, T) o Ie,T)
NMI(C,T) = \/ HE )~ TS

The NMI value lies in the range [0, 1]. Values close to 1 indicate a good
clustering.

H(X)
H(X|Y) 1(X,Y) H(Y|X)
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-—— Pairwise Measures
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Given clustering C and ground-truth partitioning 7, let x;, X; € D be any two
points, with / # j. Let y; denote the true partition label and let y; denote the
cluster label for point Xx;.

Irue Positives: X; and X; belong to the same partition in 7, and they are also
In the same cluster in C. The number of true positive pairs is

given as

% TP = [{(xi,X}): yi=yjand §j = §}| Nzy=D
O

Same partition  Same cluster

0 20\ [ 20y /9
. )( Je[)+( poememene
2 2 2
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m 25 40 35 100
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False Negatives: X; and X; belong to the same partition in 7, but they do not
belong to the same cluster in C. The number of all false
negative pairs is given as

FN = ‘{(x,-,xj) > yi=yjand y; #f’j}l

Same partition Different cluster

. @ (Fn)= e P

O

Predicted «

Negative




False Positives: X; and X; do not belong to the same partition in 7, but they
do belong to the same cluster in C. The number of false positive
pairs is given as

FP = [{(xi,x)) : yi # y; and i = Jj}

Different partition Same cluster

o —

Ip\_‘_ FP = Prc,o’iu:w’ Pa sitive

om0 (D) ()

o rr sun

True False
Positive Positive

False
Negative
A

Predicted «

Cluster C,
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Irue Negatives: x; and X; neither belong to the same partition in 7, nor do
they belong to the same cluster in C. The number of such true
negative pairs is given as

N {00 TN = H(xhxj)i yi # y;j and ?f#?jﬂ
_ Different partition  Different cluster
l‘lJab 7) 0 / / ( é X

@:@-&fp FN/*@
ey s .

X a .II @@ :

i : - i @
& O o Q
* 9
* &

Cluster €, | C, || &5



Pairwise Measures

n

5) = ”(” 1) pairs of points, we have the following

Because there are N = (
identity:

N=TP+FN+FP+TN

>(1)-3y ” P )
> (7 M =
o0 20 5 25 U laronsumen
have same Cluster
one and same
TN=N-—-(TP+FN + FP) Partition two




Pairwise Measures

Jaccard Coefficient: measures the fraction of true positive point pairs, but after
ignoring the true negative:

P
TP+ FN + FP

Jaccard = Perfect clustering = 1

Rand Statistic: measures the fraction of true positives and true negatives over all

point pairs: \
Rand Q}; IN Perfect clustering = 1 (like accuracy)

Fowlkes-Mallows Measure: Define the overall pairwise precision and pairwise recall
values for a clustering C, as follows:

prec = TP /(T P+ F@ recall = TP /(TP + F@

The Fowlkes—Mallows (FM) measure is defined as the geometric mean of the pairwise
precision and recall

TP

FM = rec) recall )=
\/UU V(TP 1 FN)(TP + FP)

@her value means a better clustering l
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Outline

® External measures for clustering evaluation
- Matching-based measures
. Entropy-based measures

. Palrwise measures

® Internal measures for clustering evaluation <«
. Graph-based measures
. Davies-Bouldin Index

. Silhouette Coefficient

We want intra-cluster datapoints to be as close as possible to
each other and inter-clusters to be as far as possible from each
other

28



The Beta-CV Measure

® Let W be the pair-wise distance matrix for all the given points.
For any two point sets S and R, we define:

=2 2w

X, €S XI'EFI’

The sum of all the intracluster and intercluster weights are given as

1 K 1 K — k_l 1
M/,,H—EEWC,,C) Wouf_ng(cfacf)_>i>iw(cfﬁcj)

=1 j>i

The distance of
each point is
measured two
times

cohesion separation
29



The Beta-CV Measure

The number of distinct intracluster and intracluster edges is given as

k k=1 k
Nin = Z (g‘) Nout = S: S: ni - n;
=1

I=1 j=i+1

BetaCV Measure: The BetaCV measure is the ratio of the mean intracluster
distance to the mean intercluster distance:

BetaCV = Win/Nin = Nour = Wi — Nou ZE_1 W(Ci ’E)
Wout/ Nour Nf Wour Nm Z;‘:1 W( Cf, C,.')

The smaller the BetaCV ratio, the better the clustering.

Image credit: Adriana Kovashka



Normalized Cut

Normalized cut: EW(C,C) SW(C,C) < W(C,C) i 1

vol(C) S W(C.V) SW(C,C)+W(C,C) G,

W(C,C)

where vol(C) = W(C, V) is the volume of cluster C,
The higher normalized cut value, the better the clustering

W(Ci, Cj) W(Ci, Ci)

|
Intra-cluster distance Inter-cluster distance

31



Silhouette

"‘ Coefficient

MOUtZ (Xl)

Mg:tti?(xi) — min{.uoutz (Xi) » Hout, (Xi)}
Uin (X;)

N

.uoutl (Xl)



Silhouette Coefficient

Define the silhoutte coefficient of a point x; as

min

fout (Xi) — Hin(Xi)
max{ug'f,?(xi), ,Uin(xi)}

where uin(X;) is the mean distance from x; to points in its own cluster y;:

Lin(X;) = foech’#"()(xi’xj)
n;,. — 1

/

S =

and ug‘j,’}‘(x,-) Is the mean of the distances from X; to points in the closest cluster:
| [ Yovec: 0(XnY)
min : ye(; 2
X;) = min ¢
/Lout( l) i+ n,

\ /

The Silhouette Coefficient for clustering C: SC = = Y7 . s;.

SC close to 1 implies a good clustering (Points are close to their own

clusters but far from other clusters) 33



The Davies-Bouldin Index

Let 1; denote the cluster mean

1
Hi:EZXj

XjEC,'

Let o, denote the dispersion or spread of the points around the cluster mean

cc (X, pi)?
L wzx,ec,npu) e

The Davies—Bouldin measure for a pair of clusters C; and C; is defined as the
ratio

Calculate the DB of i cluster  pg. _ 7 9% p — maxDB
— l _—

from other clusters O (i 1) %] lj

DB;; measures how compact the clusters are compared to the distance
between the cluster means. The Davies—Bouldin index is then defined as

. k
DB:F’Z:;DL-

a lower value means that the

clustering is better o



Summary

® External measures for clustering evaluation
- Matching-based measures
. Entropy-based measures

. Palrwise measures

® Internal measures for clustering evaluation
. Graph-based measures
. Davies-Bouldin Index

. Silhouette Coefficient
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