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Supervised Learning: Overview
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Supervised Learning: Two Types of Tasks
Given: training data {(x'1,yt1), (x12}, y2), .., (x™, y ™))

Learn: a function f(x) :y = f(x)

When y is continuous: When y is discrete:
1. Regression 2. Classification
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Classification Example 1: Handwritten digit recognition

As a supervised classification problem

Start with training data, e.g. 6000 examples of each digit

ool N\ (48172
Q232 25> 7
3¢ 7914974704659
el 72\ 7143279
b8 78 4L9qg7

» Can achieve testing error of 0.4%

* One of first commercial and widely used ML systems (for zip codes & checks)



Classification Example 1. Hand-Written Digit Recognition

O\ /|14 |Y
G|l 7]2 A

Images are 28 x 28 pixels A classification problem

Represent input image as a vector x € R784
Learn a classifier f(x) such that,
f:x—{0,1,2,3,4,5,6,7,8,9}



Classification Example 2: Spam Detection
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* This is a classification problem

* Task is to classify email into spam/non-spam
* Data x; is word count

» Requires a learning system as “enemy” keeps innovating



Regression Example 1: Apartment Rent Prediction

» Suppose you are to move to Atlanta

» And you want to find the most
reasonably priced apartment satisfying
your needs:

square-ft., # of bedroom, distance to campus...

A regression
problem

Living area (ft2) | # bedroom Rent ($)

150 1
270 1.5 ?




Regression Example 2: Stock Price Prediction
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as of 4-Apr-2008
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Copyright 2008 Yahoo! Inc. http://finance .yahoo .com/

» Task is to predict stock price at future date

A regression problem
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rent

Living area

rent

— "”_:"(-3 .
Location

Living areaX:

¢ Features:

¢ Living area, distance to campus, # bedroom ...
o Denote as x = (x4, x>, v X )

o Target:
¢ Rent
e Denotedas y

¢ Training set: B
x = {xtU, x13, . xW}] e RY

y = {ym,y@ . ym)
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Regression: Problem Setup

0 1

* Suppose we are given a training set of N observations

* Regression problem is to estimate y(x) from this data
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Linear Regression

Assume Y is a linear function of x (features) plus noise €
y =0g+0x;++04x4+€

where € is an error term of unmodeled effects or random noise

Let & = (6,64, ...,04)", and augment data by one dimension

Y
Then y = x60 + ¢

14


http://madrury.github.io/jekyll/update/statistics/2017/08/12/noisy-regression.html
http://madrury.github.io/jekyll/update/statistics/2017/08/12/noisy-regression.html

Least Mean Square Method

» Given N data points, find 8 that minimizes the mean square
error

. ~ 1 . .
Training 6 = argmin P L(Q) — Ez(y{l} — x{‘}H)Z

. . . dL(6)
o Our usual trick: set gradient to 0 and find parameter FY I 0
dL(0)

o = __z(x{z})Ty{l} 14— z(x{l})Tx{l}g =0
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Matrix form

1 xil} {1}
2 {2}
X = 1 Xl . d y p—
1 xin} Hd

n><(d+1) (d+1)x1

MSE(0) = argmin ¢ L(6) = - = (y — x0)T(y — x6)

O + 01xt 7 + 0,08 + o+ G x
w0 — |00+ 6167 + Hzx{z} + ot GgxtH

By + 0™ + Hzx{”} + ot Ogxt™

nx1



L(6)

a0

Matrix Version and Optimization

N N
i=1 =1

Let’s rewrite it as:

aLa(HH) — % (x{l}’ ) x{n})T(y{l}’ ,y{n}) -|— % (x{l}’ ’x{n})T(x{l}, .., x{n})e — O
Define X = (x4, ..., x™) and y = (y{4, ..., y ™)
L(6) 2 2
=——X'y+-X"X0 =0
00 n 4 n
> 0=X'X)"XTy=X"ty X1 is the pseudo-inverse of X

XTxx+ =x7 17



0=X"X)"XTy=X"%y

Xnxd n = instances d = dimension

XTXx = dXn nxd

|

QU
X
QU

Not a big matrix because n > dThis matrix is invertible most of the
times. If we are VERY unlucky and columns of X' X are not linearly
independent (it's not a full rank matrix), then it is not invertible.



Alternative Way to Optimize

» The matrix inversion in8 = (XTX)~1xTy can be very expensive to
compute

N
aLa(g) = —EE(x{i})T( y — xg)

n [
1=1

¢ Gradient descent

N
gt+1  pt +E2(x{i})T( y — x g
n
1=1

» Stochastic gradient descent (use one data point at a time)

0'+ < 6 + B, x (xIHT (yl8 — x{i3g)
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Recap

» Stochastic gradient update rule
gttt gt + g, X (x T (yit} — x11g)

¢ Pros: on-line, low per-step cost
¢ Cons: coordinate, maybe slow-converging

¢ Gradient descent .
g+l  pt +gZ(x{i})T(y{i} — xg)
n
i=1

¢ Pros: fast-converging, easy to implement
¢ Cons: need to read all data

» Solve normal equations
0 = (XTX)_lXTy
¢ Pros: a single-shot algorithm! Easiest to implement.

» Cons: need to compute inverse (X7X)™1, expensive, numerical
issues (e.g., matrix is singular ..)

20



Linear regression for classification

Raw Input x = (1, x4, ..., X256)

Linear model (8,64, ..., 055¢)

16
Extract useful information

intensity and symmetry x = (1,x4,x5) 16

Sum up all the pixels = intensity
Symmetry = -(difference between flip version)



X = 1,_X' , X . .
(L, X1, X2) X1 = intensity x, = symmetry

It is almost linearly separable

symmetry

intensity



Linear regression for classification

Binary-valued functions are also real-valued +1 € R

Use linear regression x'6 ~ yt = +1 | = index of a data-point

| -1 xHe <0
Let's calculate, sign(xt¥0) = {0 +{3g = 0
1 xg > 0

For one data point (data-point i) with d dimensions (instance):



+1

Symmetry

Average Intensity

Not really the best for classification, but t's a good start
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Extension to Higher-Order Regression
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» Want to fit a polynomial regression model

y=0p+0;x +0,x*+--+6,x%+¢

9 7 = {1, X,Xz, ...,Xd} € Rd and 0 = (90, 91: 92: "'-'Qd)T

y = z0



Least Mean Square Still Works the Same

» Given N data points, find @ that minimizes the mean square
error

~ 1 . .
0 = argmin ¢ L(6) == (y1¥ - 2100’

» Our usual trick: set gradient to 0 and find parameter

OL(O
a( ) _ __E(Z{l})T(y{l} 2g) = 0

dL(6) z . . . .
= 2N (T @ 4 _Z(Z{l})TZ{l}Q ~ 0
00 n 4 n 4
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Matrix Version of the Gradient

d0L(0) 2 - 2 .
g - iyt z60 =0

> 0=(C'2)Z2Zly=2z"y

» If we choose a different maximal degree d for the polynomial,
the solution will be different.

30



What is happening in polynomial regression?

x =[0,0.5,1, ...,9.5,10] £ =0, + 6,x + 0,7
y = [3,3.4875,3.95, ..., 7.98,8] 6o = 3;6, = 1;0, = —0.5

. o RMSE=0




Let's add to the feature space

x; = [0,0.5,1, ...,9.5,10] x4 = [0,0.25,1, ...,90.25,100]
y = [3,3.4875,3.95, ..., 7.98,8]
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We are fitting a D-dimensional hyperplane in a D+1

dimensional hyperspace (in above example a 2D plane
in a 3D space). That hyperplane really is 'flat' / 'linear’
in 3D. It can be seen a non-linear regression (a curvy
line) in our 2D example in fact it is a flat surface in 3D.
So the fact that it is mentioned that the model is linear
In parameters, it is shown here.

s 00 G0
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Increasing the Maximal Degree

from Bishop
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Bias-Variance Trade off  Animation

We will have multiple prediction values (i.e. through Cross validation) E[yp]

N
L(O) = %z(y{i} — x{i}g)z = F [(Ya — Yp)2]
i=1

(Va—p) = (Va — E[vp] + E[vp] = 3)°

= (Va — E[yp])z + (Eyp| = 3’19)2 +2(Va = E|yp ) (E[yp] — ¥p)


https://mlu-explain.github.io/bias-variance/




Bias-Variance Trade off  Animation

We will have multiple prediction values (i.e. through Cross validation) E[yp]

N
L(O) = %z(y{i} — x{i}g)z = F [(Ya — Yp)2]
i=1

(Va—p) = (Va — E[vp] + E[vp] = 3)°

= (Va — E[yp])z + (Eyp| = 3’19)2 +2(Va = E|yp ) (E[yp] — ¥p)

E [(ya - yn)zl = (Vo — Eb’p])z + Lk [(E[YP] - yP)zl

= [Bias]?* + Variance

= [true value — mean(predictions)|* — mean[(mean(prediction) — prediction)? ]


https://mlu-explain.github.io/bias-variance/

Why E[Z(Ya — E[YP])(E[YP] — 3’19)] =07

Vo — E|y,| is a scalar, therefore E [ya — E[yp]] = Ya — E|y,]

E[2(Ya = E|yp|) (E[yp] — w)]

= 2(Ya — E[y])E[E[yp] = o]
= 2(ya — E|w]) (E [E[yl’]] B E[yp])

=2(¥a — E|yp|)(Elyp| = Elyp]) = 0



Which One iIs Better?

from Bishop .
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¢ Can we increase the maximal polynomial degree to very large,
such that the curve passes through all training points?

- We will know the answer Iin next lecture.



Take-Home Messages

® Supervised learning paradigm
® Linear regression and least mean square

® Extension to high-order polynomials

41
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