Machine Learning CS 4641-7641

Regularized Linear Regression

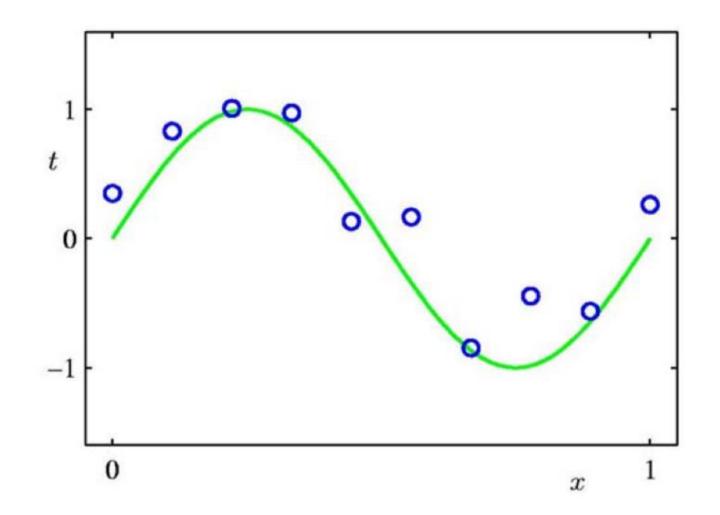
Mahdi Roozbahani Georgia Tech

These slides are inspired based on slides from Andrew Zisserman, Jonathan Taylor, Chao Zhang and Yaser Abu-Mostafa.

Outline

- Overfitting and regularized learning
- Ridge regression
- Lasso regression
- Determining regularization strength

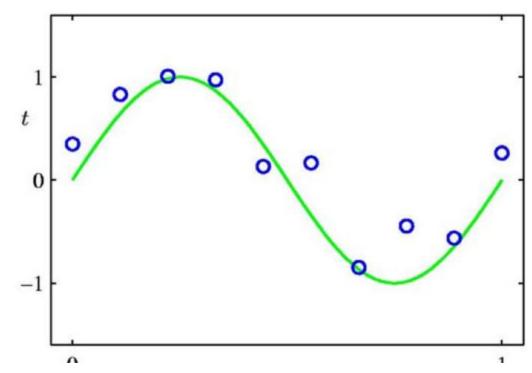
Regression: Recap



Suppose we are given a training set of N observations

Regression problem is to estimate y(x) from this data

Regression: Recap



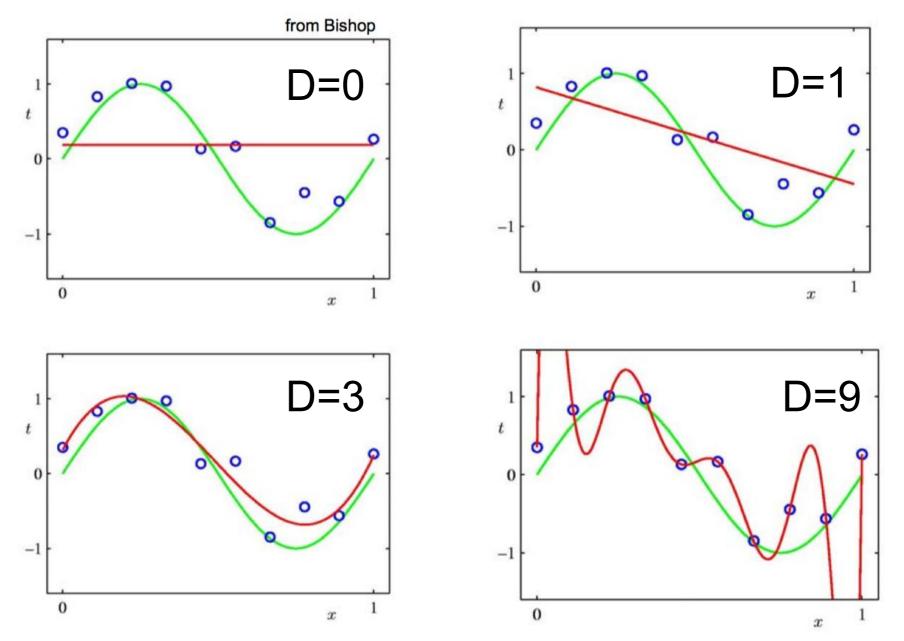
Want to fit a polynomial regression model

$$y = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_d x^d + \epsilon$$

• $z = \{1, x, x^2, ..., x^d\} \in \mathbb{R}^d \text{ and } \theta = (\theta_0, \theta_1, \theta_2, ..., \theta_d)^\mathsf{T}$

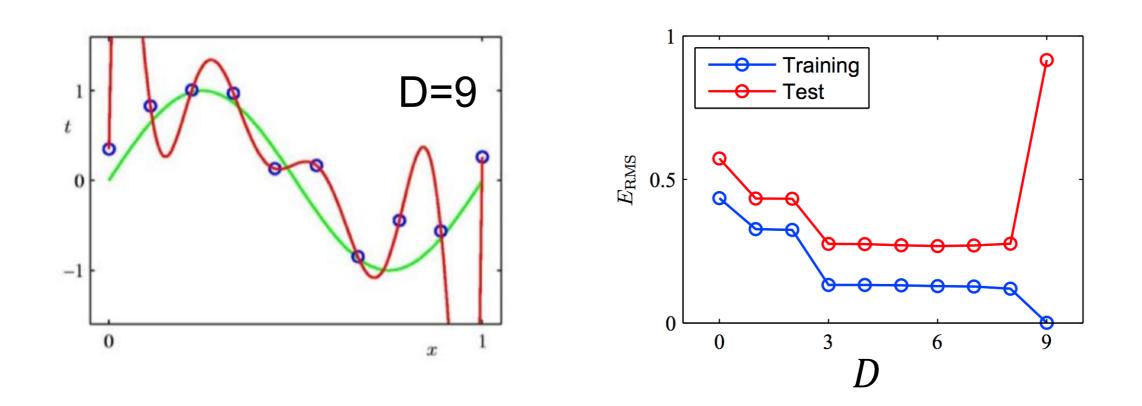
$$y = z\theta$$

Which One is Better?



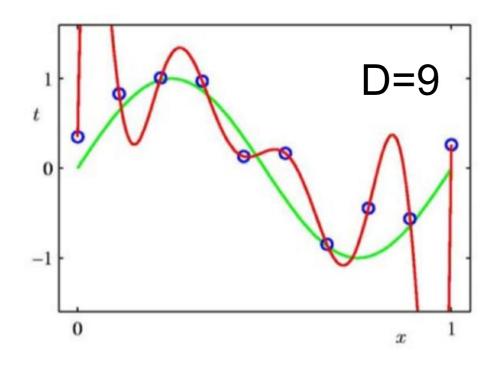
 Can we increase the maximal polynomial degree to very large, such that the curve passes through all training points?
 No, this can lead to overfitting!

The Overfitting Problem



- The training error is very low, but the error on test set is large.
- The model captures not only patterns but also noisy nuisances in the training data.

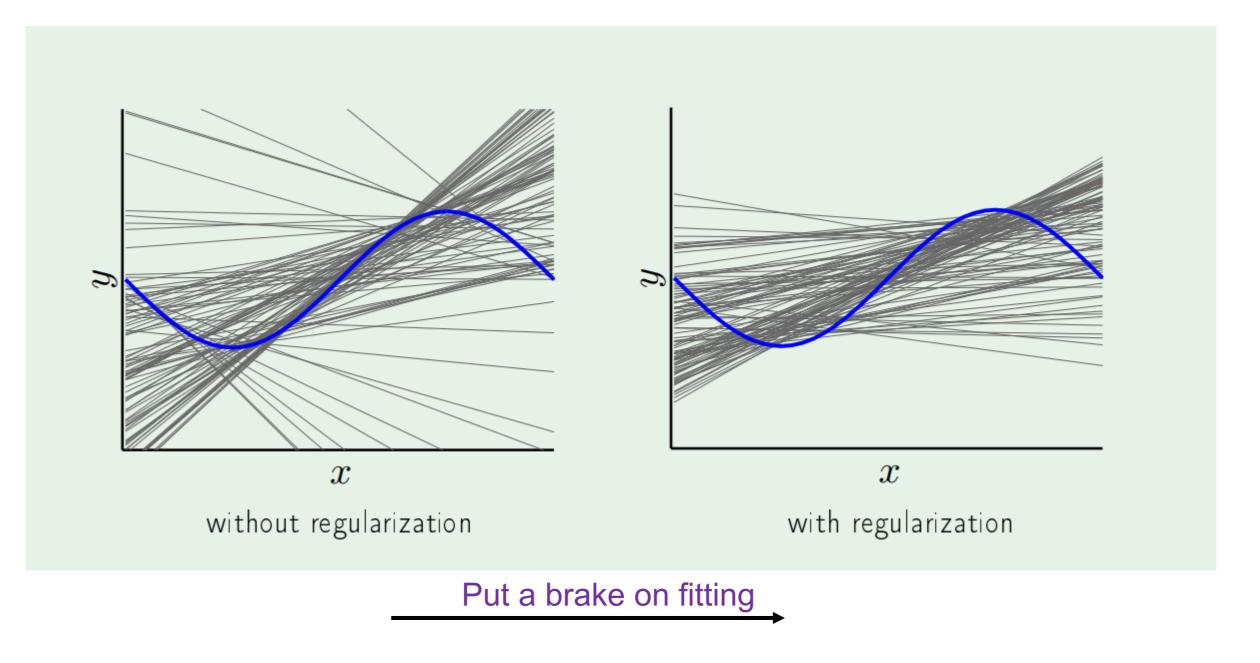
The Overfitting Problem



 In regression, overfitting is often associated with large Weights (severe oscillation)

• How can we address overfitting?

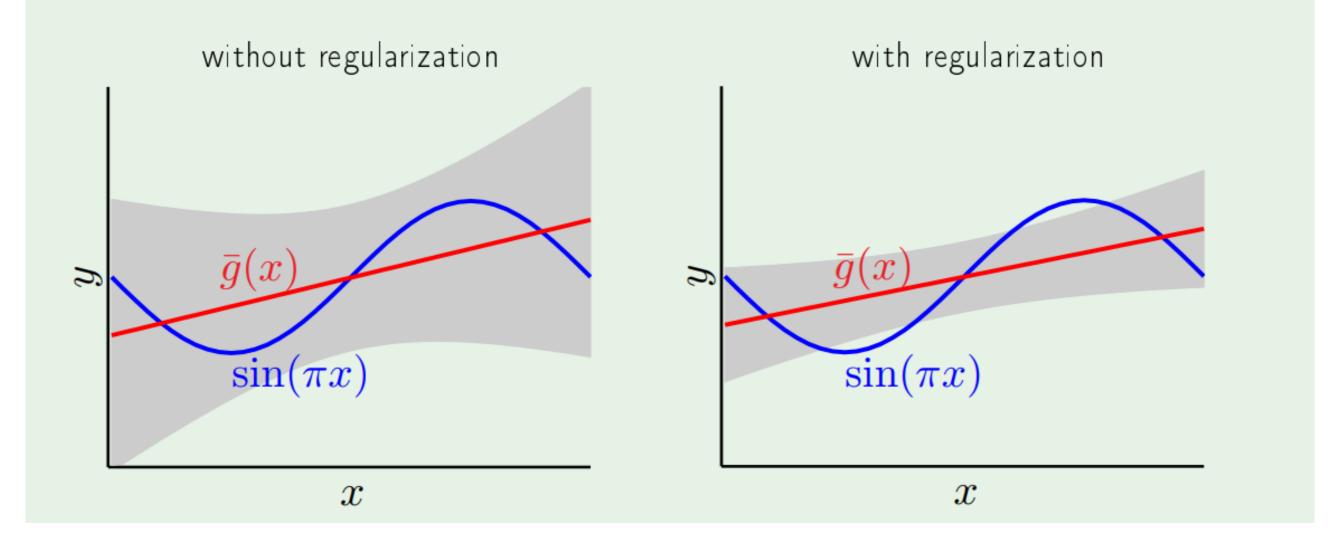
Regularization (smart way to cure overfitting disease)



Fit a linear line on sinusoidal with just two data points

Who is the winner?

$\bar{g}(x)$: average over all lines



bias=0.21; var=1.69

bias=0.23; var=0.33

Polynomial Model

Want to fit a polynomial regression model

$$y = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_d x^d + \epsilon$$

Let's rewrite it as:

$$y = \theta_0 + \theta_1 z_1 + \theta_2 z_2 + \dots + \theta_d z_d + \epsilon = \mathbf{z}\boldsymbol{\theta}$$

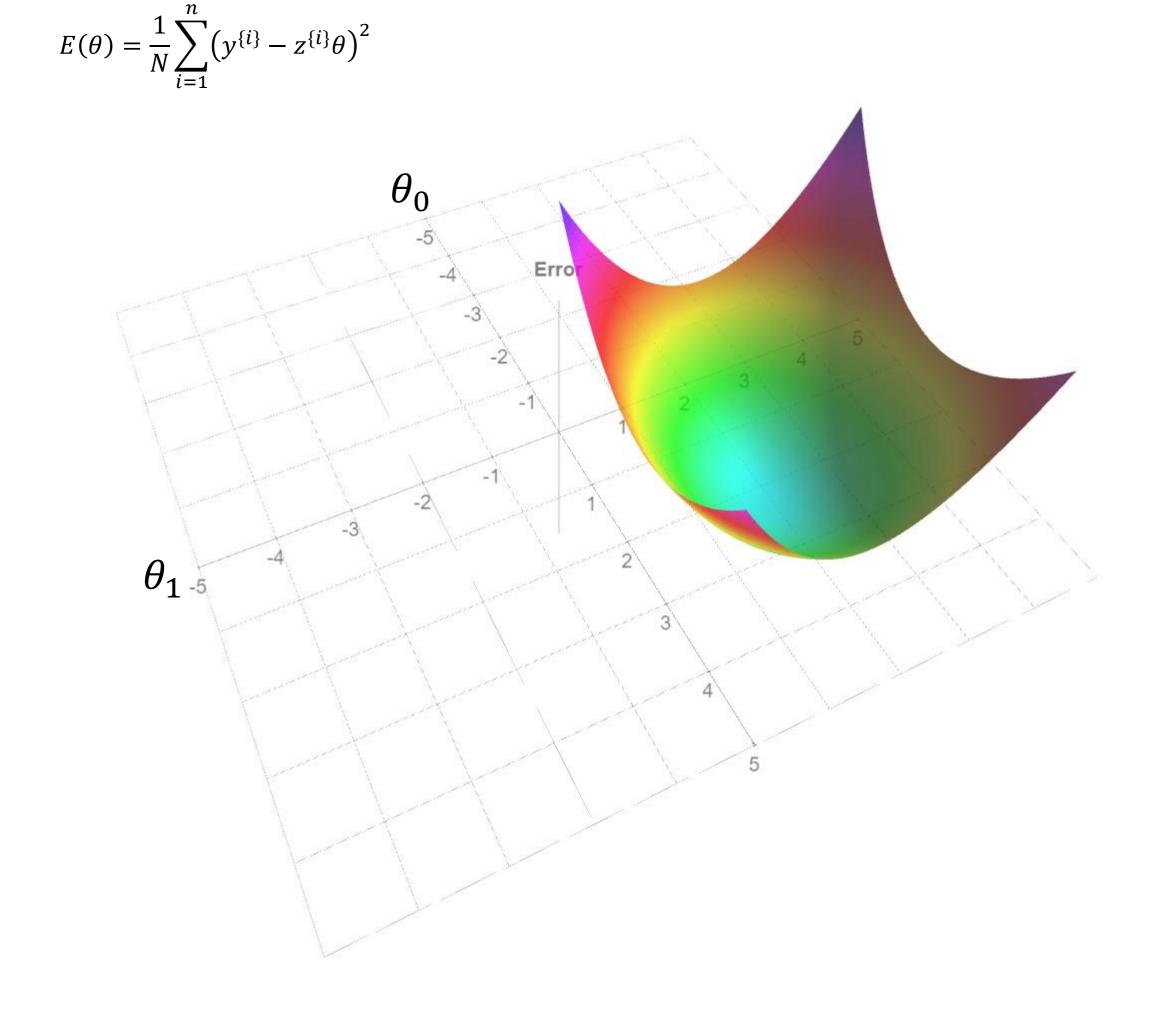
Regularizing is just constraining the weights (θ)

For example: let's do a hard constraining

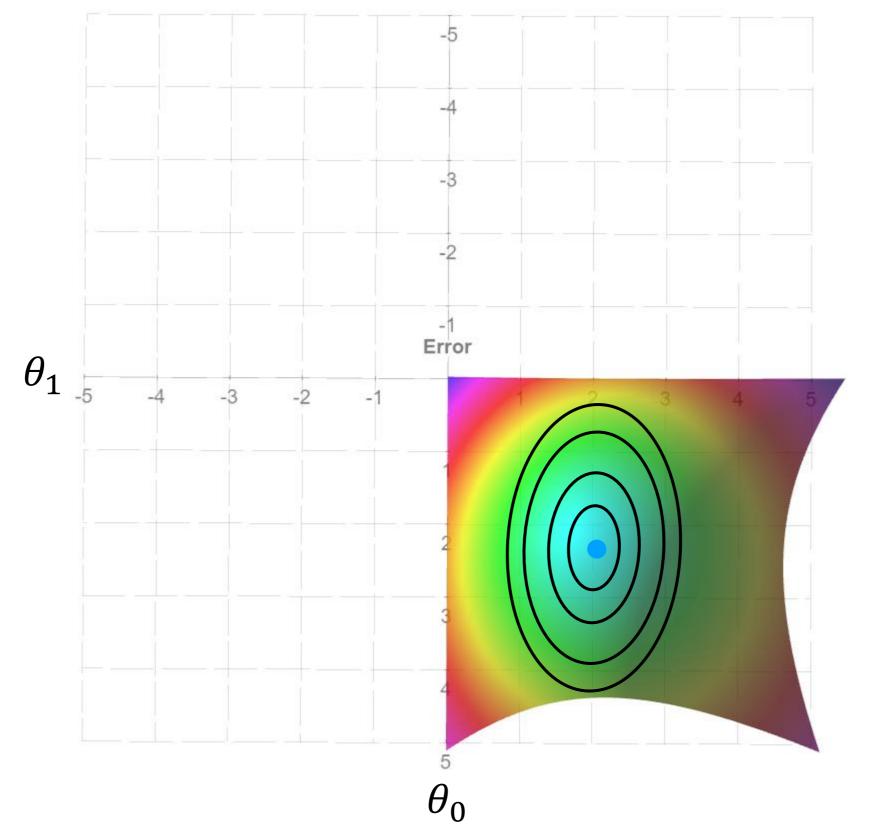
$$y = \theta_0 + \theta_1 z_1 + \theta_2 z_2 + \dots + \theta_d z_d$$

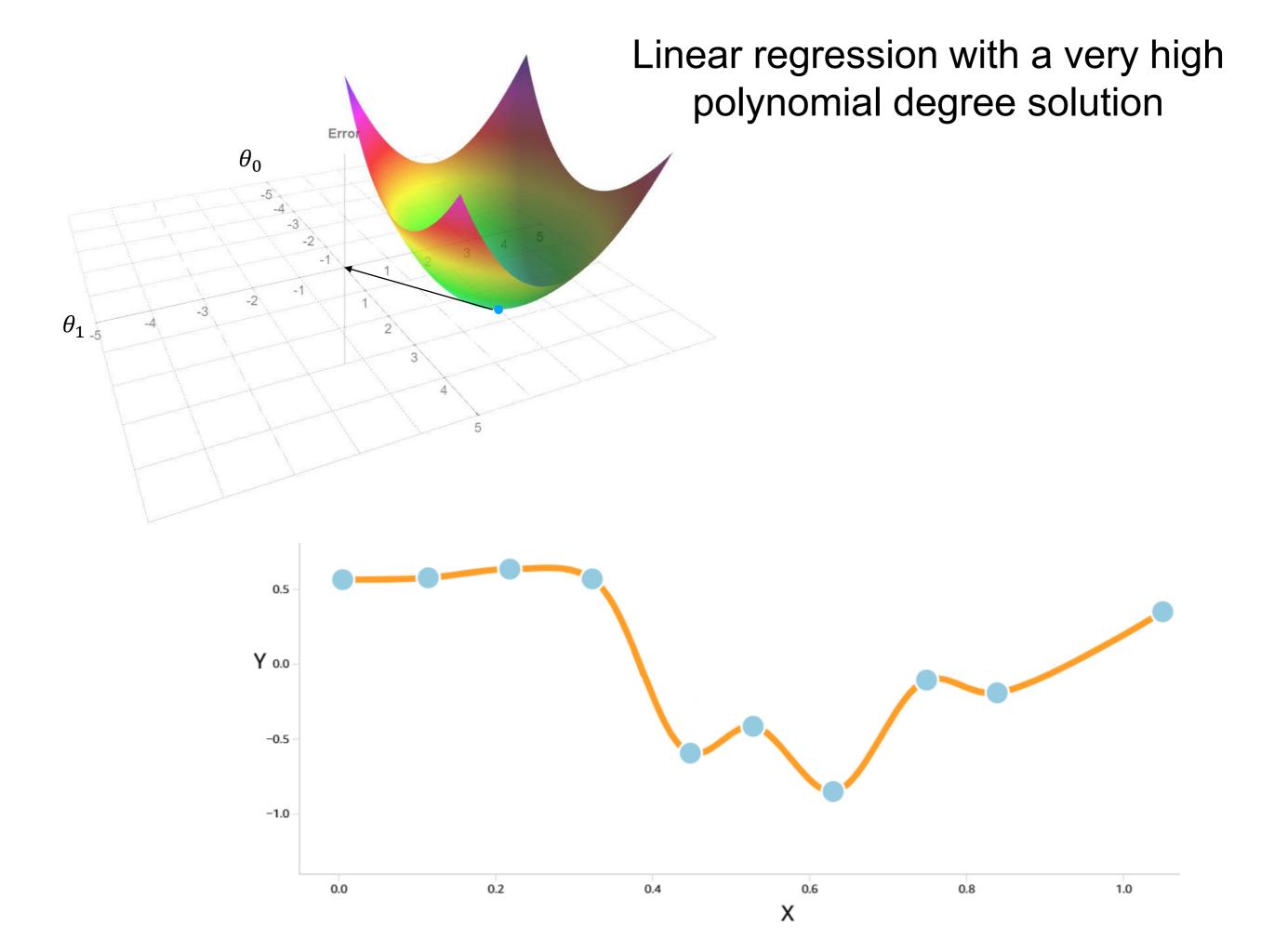
subject to $\theta_d = 0 \text{ for } d > 2$

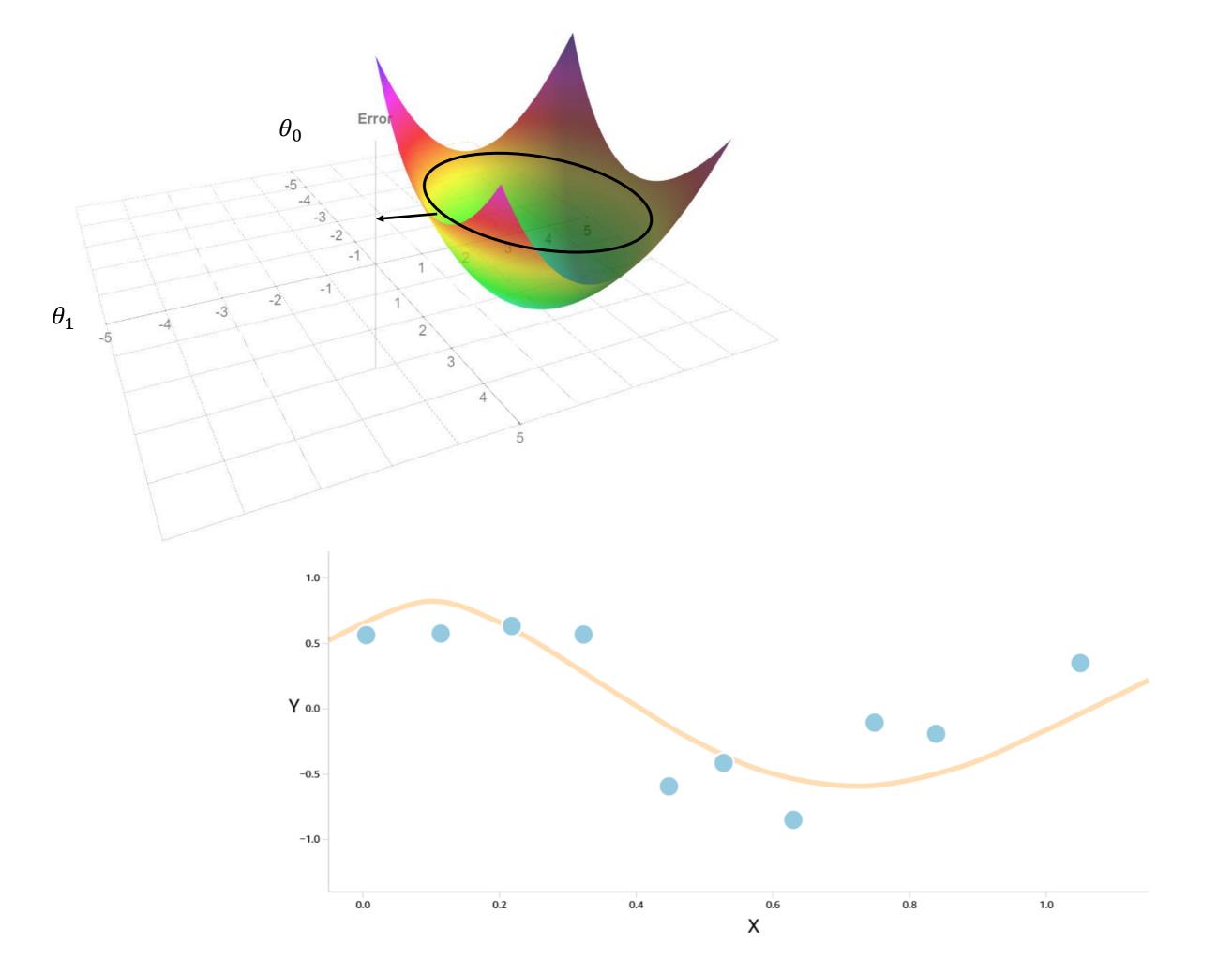
 $y = \theta_0 + \theta_1 z_1 + \theta_2 z_2 + 0 + \dots + 0$



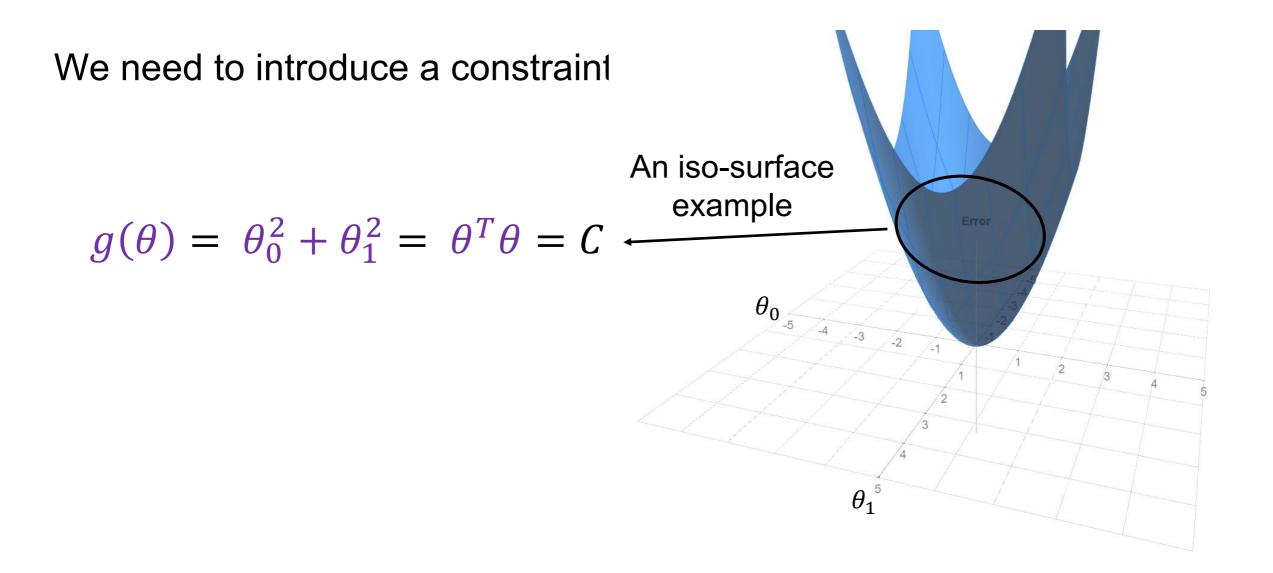
Project the same graph on x-y using contour plot



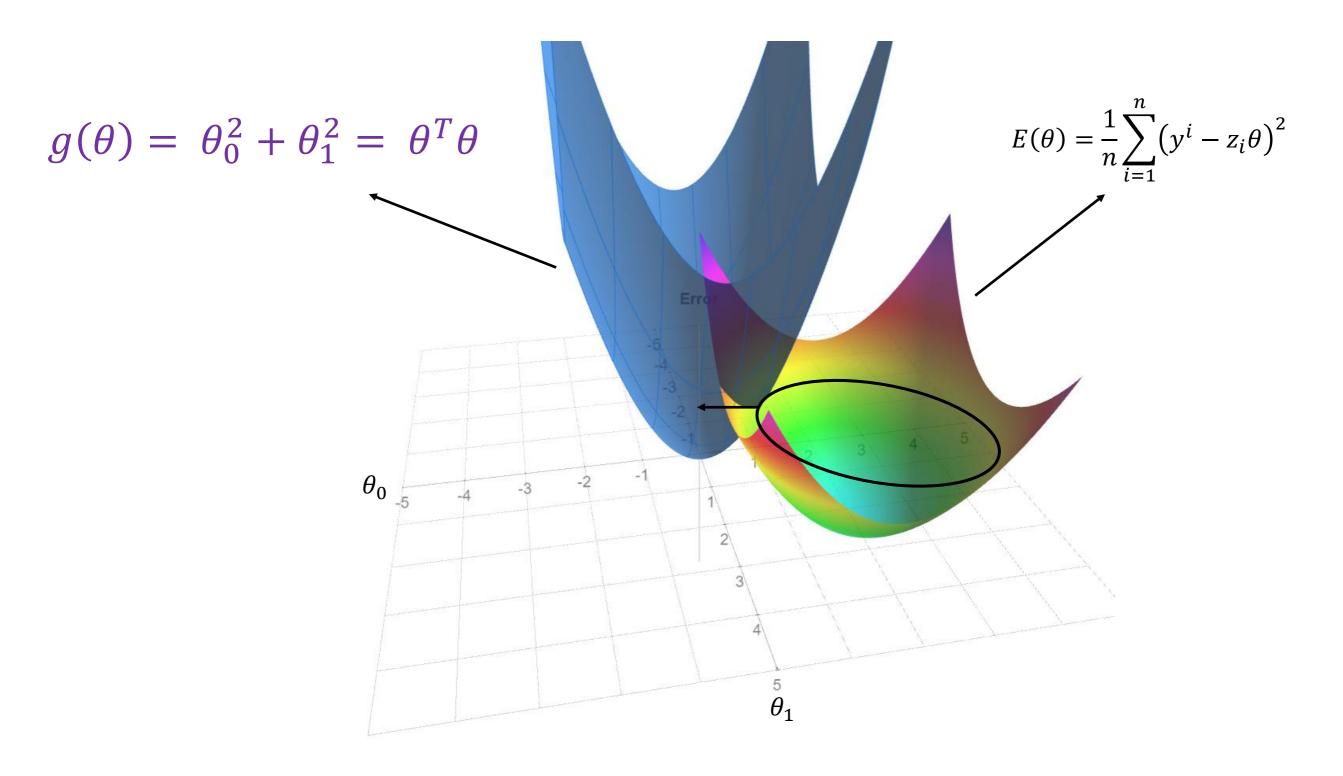




How can we get an optimal solution with a positive error for a model that overfits?

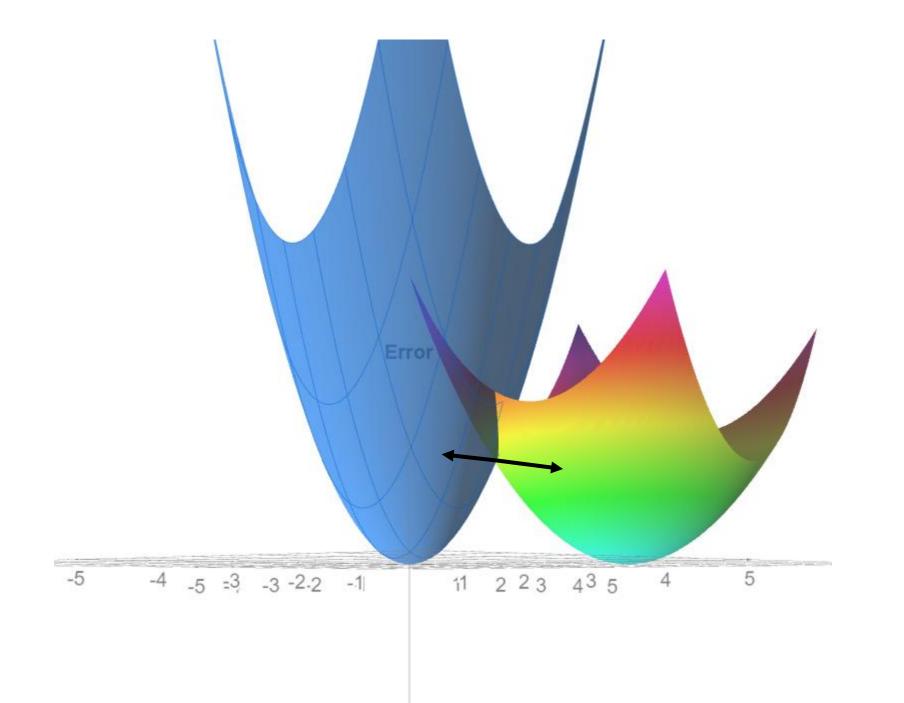


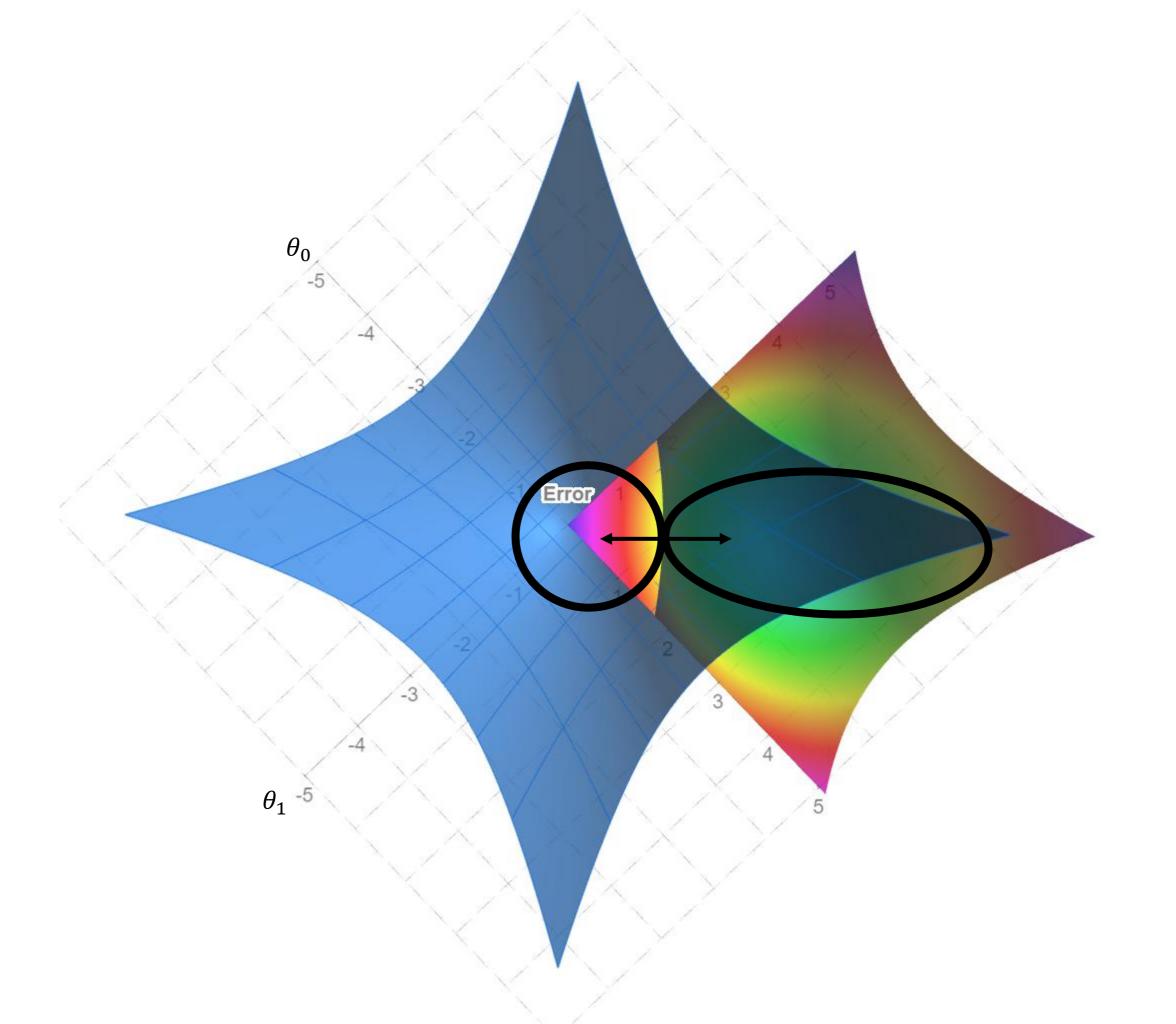
Error function together with a new introduced constraint



Let's define the Lagrange function $L(\theta, \lambda) = E(\theta) + \lambda q(\theta)$ $L(\theta, \lambda) = E(\theta) + \lambda \theta^T \theta$ $\nabla[E(\theta) + \lambda \theta^T \theta] = 0$ $\nabla L(\theta, \lambda) = 0$ $\nabla[E(\theta)] + \lambda \nabla[\theta^T \theta] = 0$

How to enforce the gradient of Lagrange function to be zero





Let's calculate the gradients

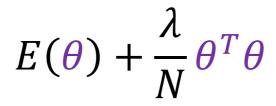
Gradient of constraint $g(\theta)$ $\nabla[\theta^T \theta] = 2\theta$

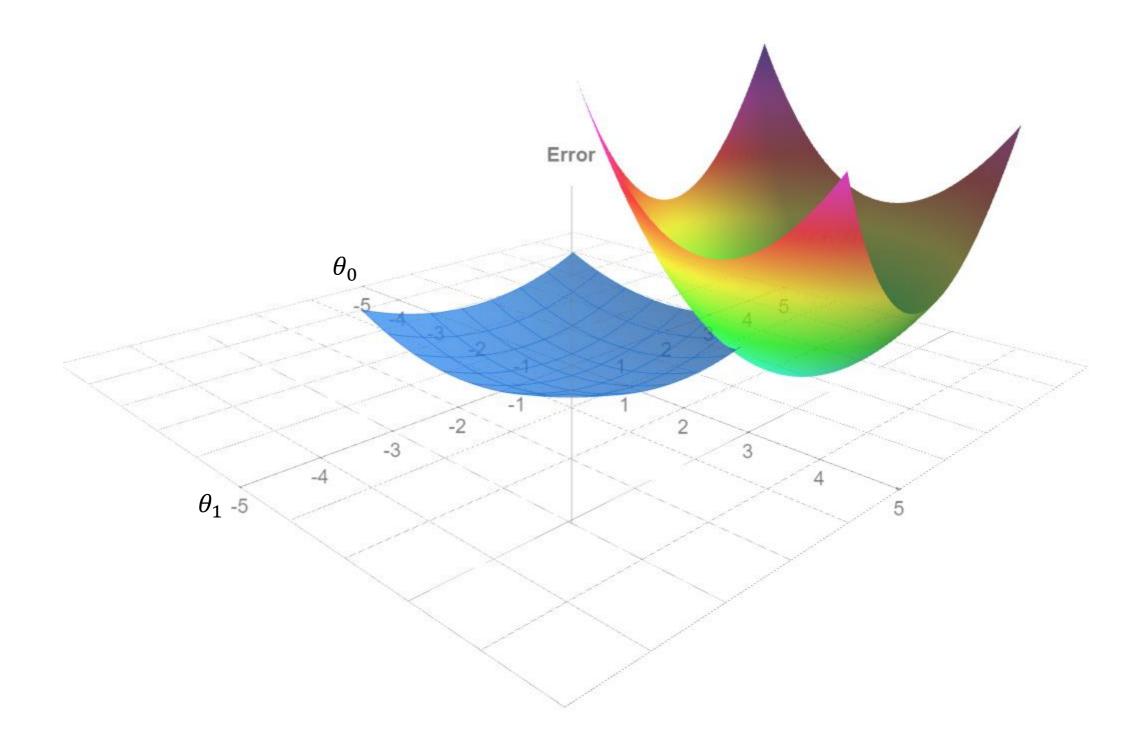
 $\nabla[E(\boldsymbol{\theta})] + \lambda \nabla[\boldsymbol{\theta}^T \boldsymbol{\theta}] = 0$

 $\nabla[E(\theta)] = -\lambda \nabla[\theta^T \theta]$

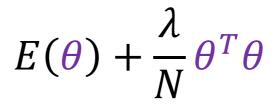
 $\nabla E(\theta) = -2\lambda\theta$

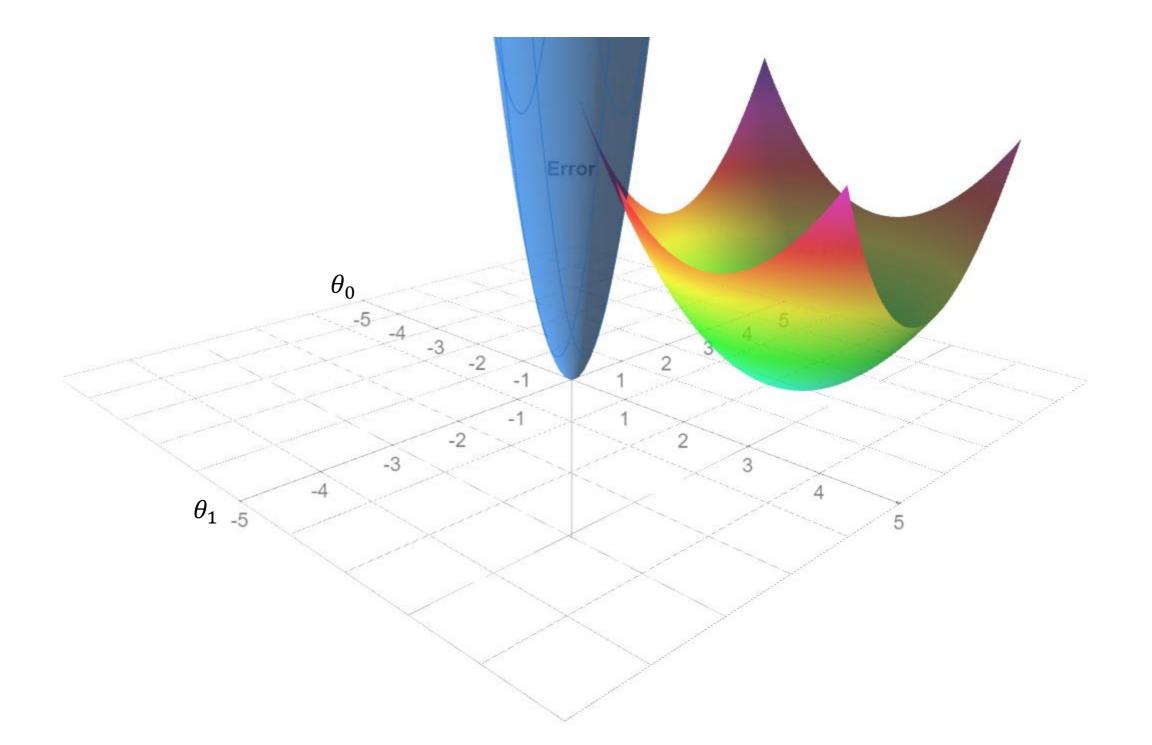
The effect of low Lambda





The effect of high Lambda





Regularized Learning

Now we know Why this term leads to the regularization of parameters

Minimize $E(\theta) + \lambda \theta^T \theta$

Regularized Error

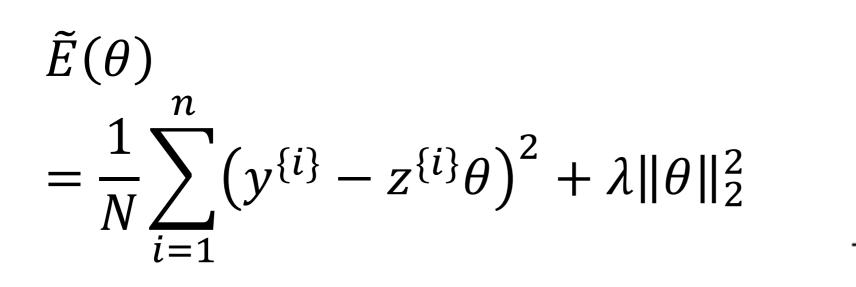
$$\widetilde{E}(\theta) = \frac{1}{N} \sum_{i=1}^{n} \left(y^{\{i\}} - z^{\{i\}} \theta \right)^{2} + \frac{\lambda}{2N} \|\theta\|_{2}^{2}$$

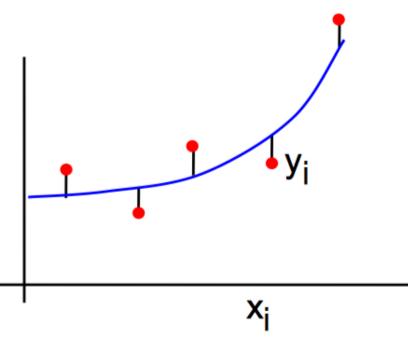
L2 Regularization term

Outline

- Overfitting and regularized learning
- Ridge regression
- Lasso regression
- Determining regularization strength

Ridge Regression





 $\theta_0 + \theta_1 z_1 + \theta_2 z_2 + \dots + \theta_d z_d + \epsilon = \mathbf{z}\boldsymbol{\theta}$

General form
$$\tilde{E}(\theta) = \frac{1}{N} \sum_{i=1}^{n} \left(y^{\{i\}} - z^{\{i\}} \theta \right)^2 + \lambda \|\theta\|_2^2$$

Matrix form

$$\tilde{E}(\theta) = \frac{1}{N} (y - z\theta)^{\mathrm{T}} (y - z\theta) + \lambda \|\theta\|_{2}^{2}$$

$$\frac{\partial \tilde{E}(\theta)}{\partial \theta} = -z^T (y - z\theta) + \lambda \theta$$

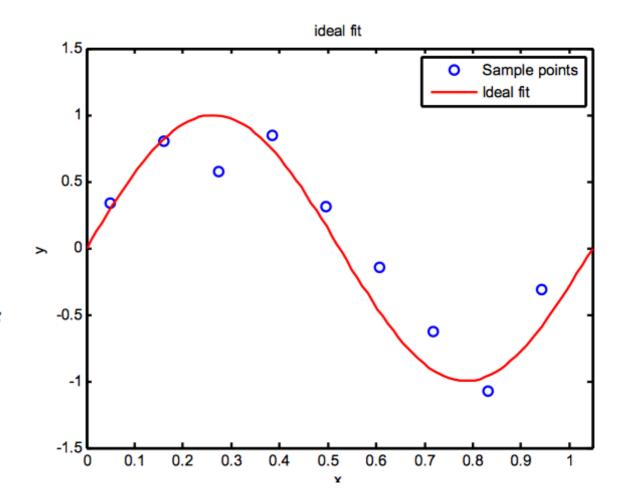
$$(z^{T}z + \lambda I)\theta = z^{T}y$$
$$\theta = (z^{T}z + \lambda I)^{-1}z^{T}y$$

Ridge Regression Example

• The red curve is the true function (which is not a polynomial)

• The data points are samples from the curve with added noise in y.

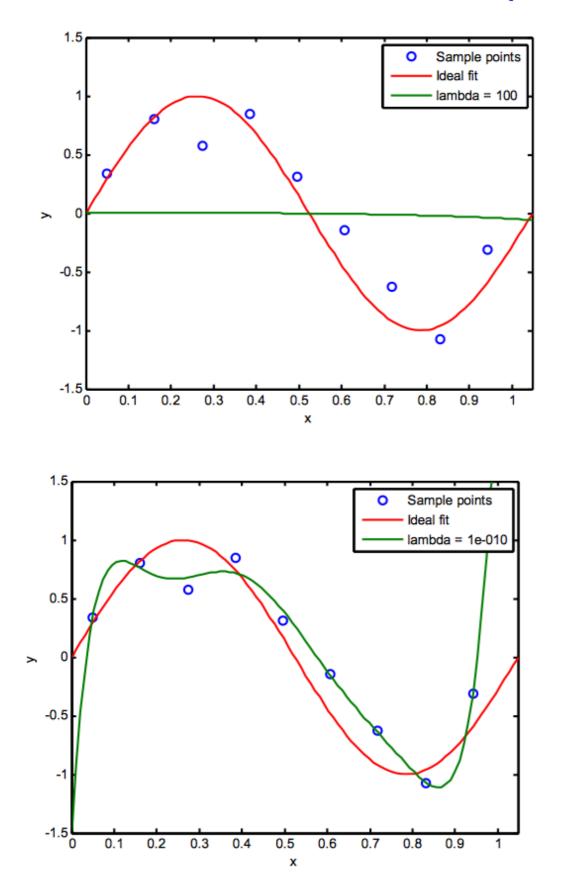
• There is a choice in both the degree, D, of the basis functions used, and in the strength of the regularization

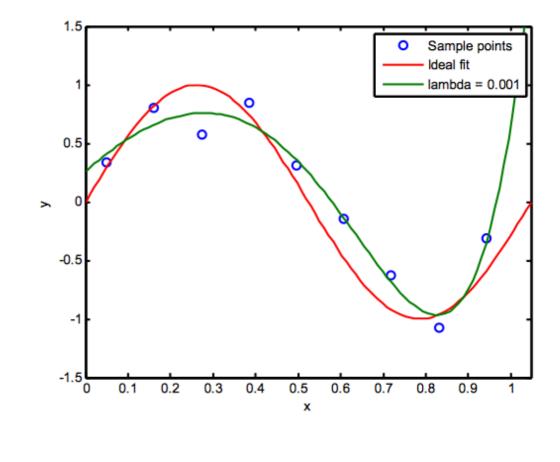


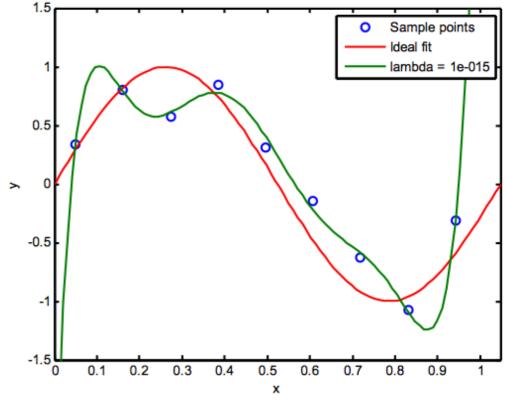
$$\widetilde{F}(x,\theta) = z\theta \qquad z: x \to z$$

$$\widetilde{E}(\theta) = \frac{1}{N} \sum_{i=1}^{n} \left(y^{\{i\}} - z^{\{i\}} \theta \right)^2 + \lambda \|\theta\|_2^2 \quad \theta \in \mathbb{R}^{D+1}$$

N = 9 samples, D = 7

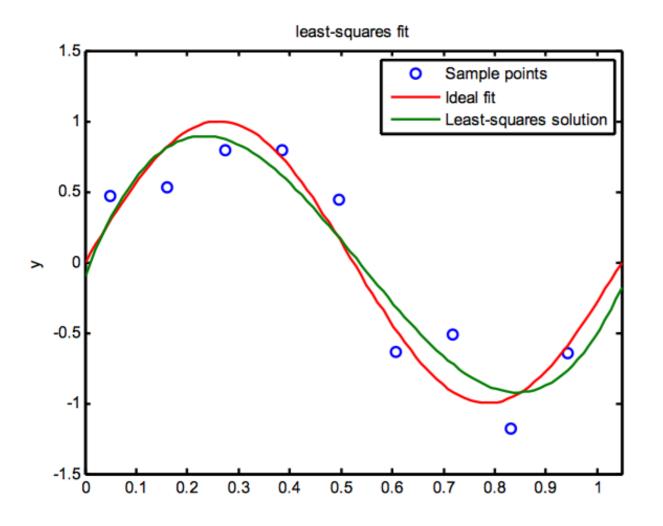


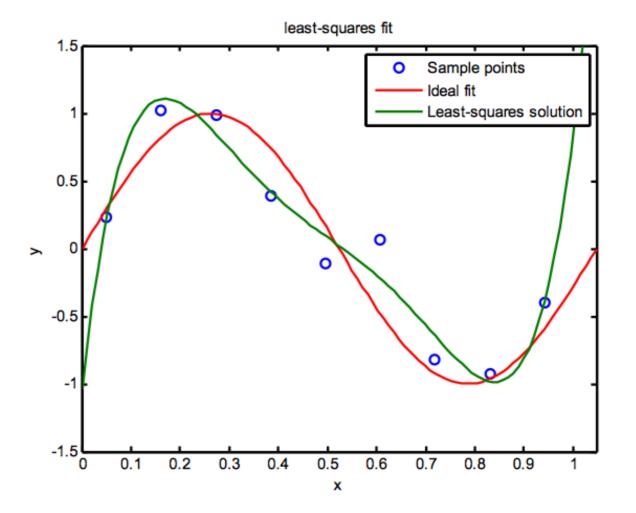




D = 3

D = 5





Outline

- Overfitting and regularized learning
- Ridge regression
- Lasso regression
- Determining regularization strength

Regularized Regression

$$\tilde{E}(\theta) = \frac{1}{N} \sum_{i=1}^{n} \left(y^{\{i\}} - z^{\{i\}} \theta \right)^2 + \lambda \|\theta\|_2^2$$

Squared loss\Error

$$\frac{1}{N} \sum_{i=1}^{n} \left(y^{\{i\}} - z^{\{i\}} \theta \right)^2$$

L2 Regularizer

 $\lambda \|\theta\|_2^2$

Now let's look at another regularization choice.

The Lasso Regularization (L1 norm) and sparsity

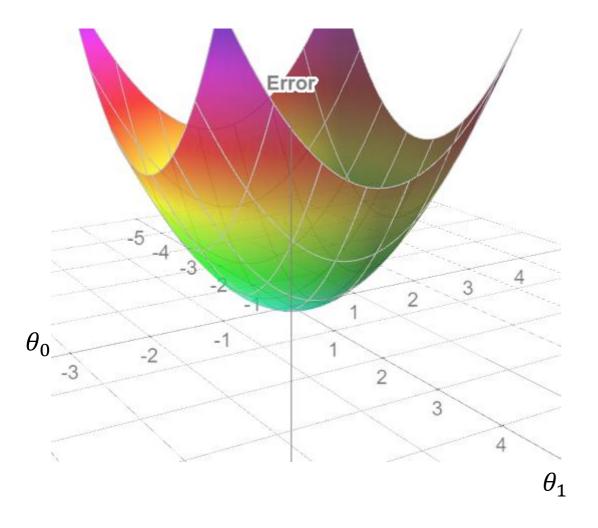
Lasso = Least Absolute Shrinkage and Selection Operator

$$\tilde{E}(\theta) = \frac{1}{N} \sum_{i=1}^{n} \left(y^{\{i\}} - z^{\{i\}} \theta \right)^2 + \lambda \|\theta\|_1$$

L1 norm induces sparsity. This means that some of the weights become zero, and the feature contribution will be completely removed. L1 Regularizer could be used for feature selection

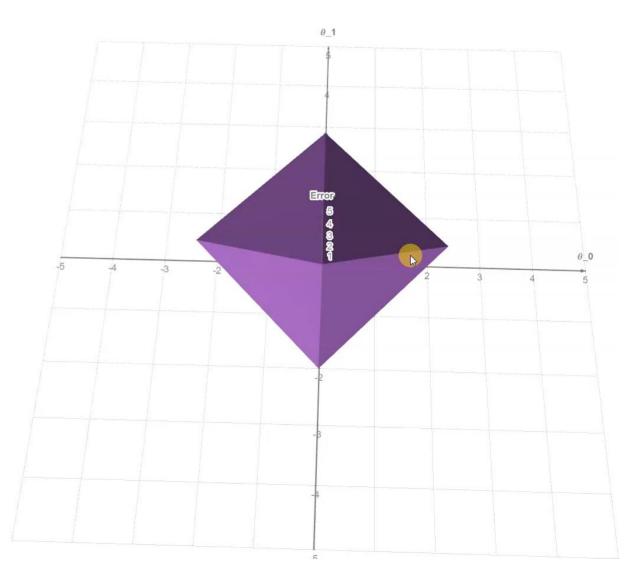
Ridge Regularizer

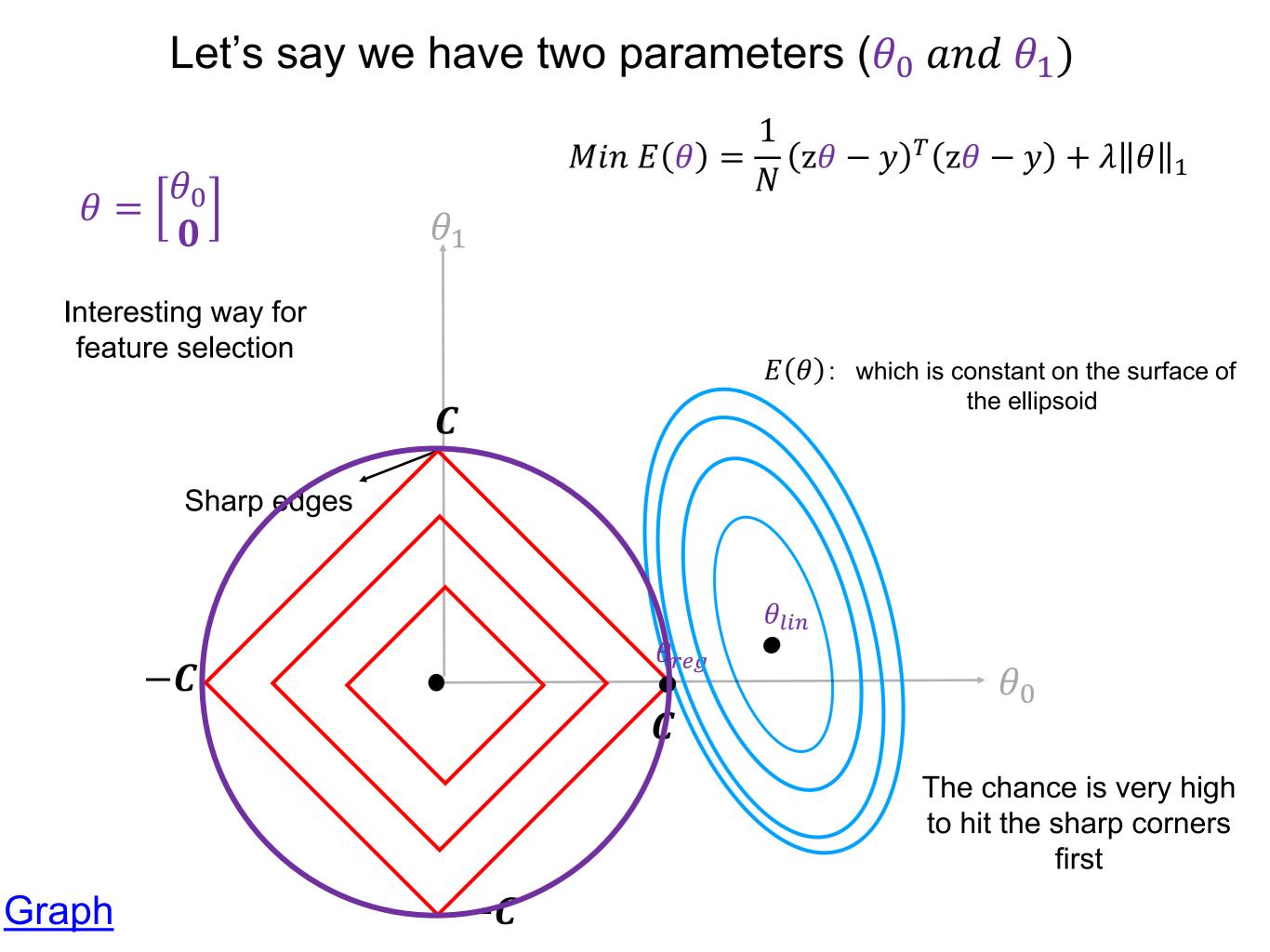
 $g(\theta) = \theta_0^2 + \theta_1^2 = \theta^T \theta$



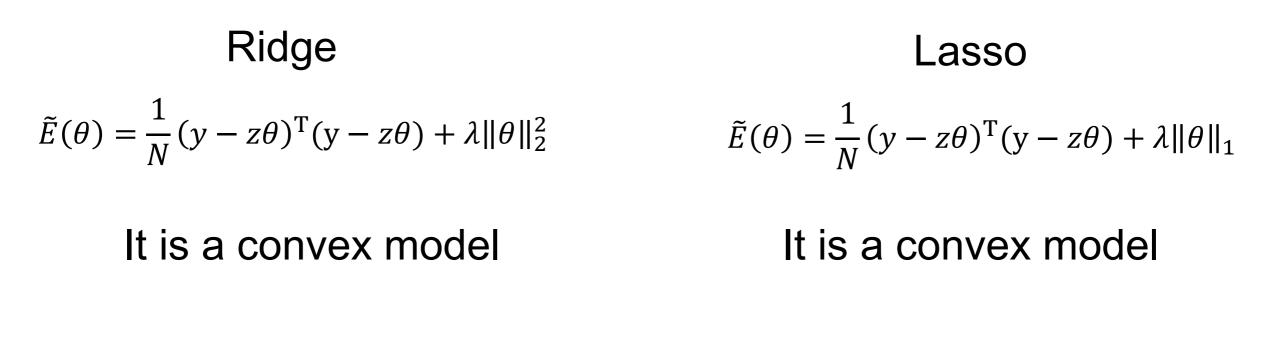
Lasso Regularizer

 $g(\theta) = \theta_0 + \theta_1 = \theta$





Ridge versus Lasso



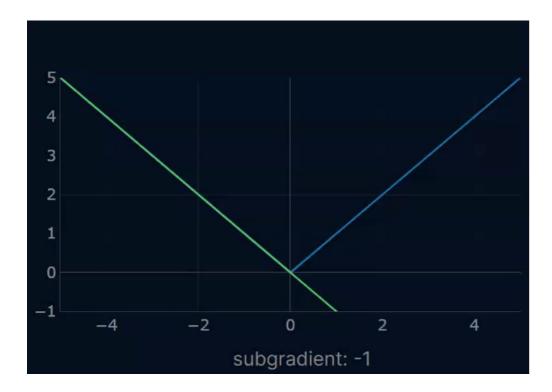
Both mean squared error and L2 regularizer are differentiable.

We can get a closed form solution

L1 regularizer is NOT differentiable.

We can **NOT** get a closed form solution

Sub-gradient Descend in Lasso



$$\tilde{E}(\theta) = \frac{1}{N} (y - z\theta)^{\mathrm{T}} (y - z\theta) + \lambda \|\theta\|_{1}$$

$$\frac{\partial \tilde{E}(\theta)}{\partial \theta} = -z^T (y - z\theta) + \frac{\partial (\lambda \|\theta\|_1)}{\partial \theta}$$

Using Sub-gradient

$$\frac{\partial \tilde{E}(\theta)}{\partial \theta} = -z^T (y - z\theta) + \lambda sign(\theta)$$

In sign function, we use this sub-gradient line as our under-estimator (below our function)

Outline

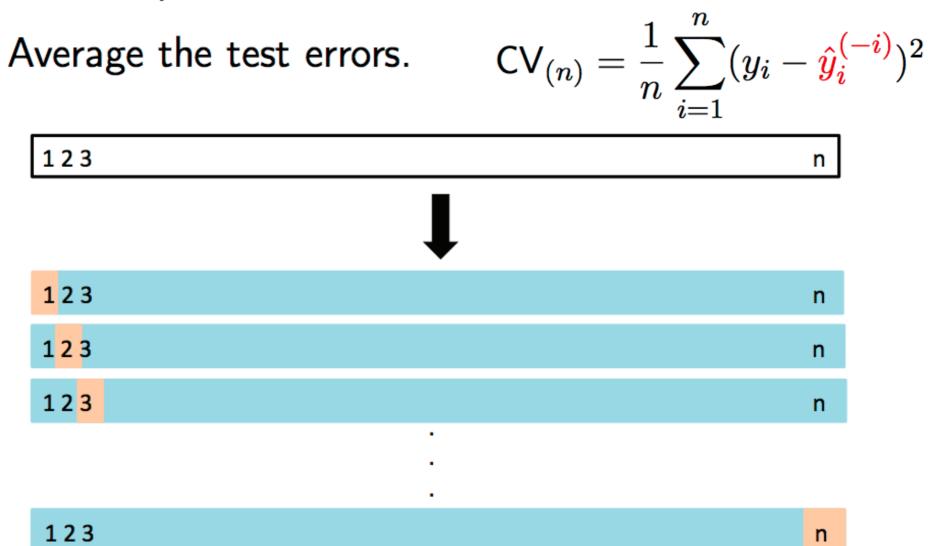
- Overfitting and regularized learning
- Ridge regression
- Lasso regression
- Determining regularization strength

Leave-One-Out Cross Validation

For every $i = 1, \ldots, n$:

train the model on every point except i,

compute the test error on the held out point.



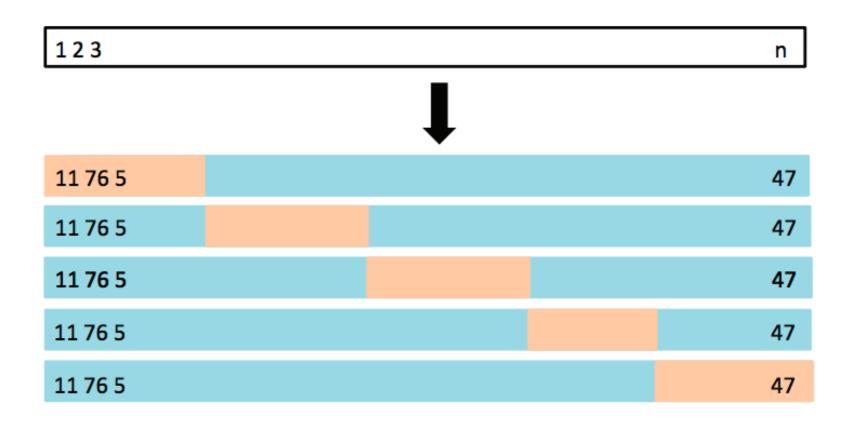
K-Fold Cross Validation

Split the data into k subsets or *folds*.

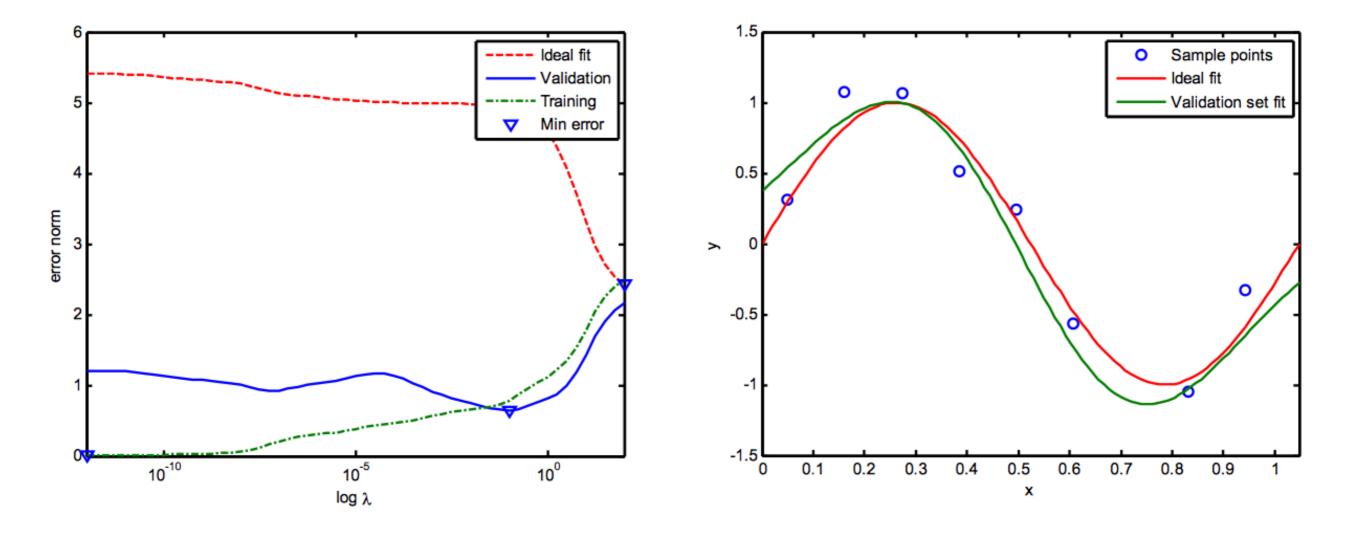
For every $i = 1, \ldots, k$:

- train the model on every fold except the *i*th fold,
- compute the test error on the *i*th fold.

Average the test errors.



Choosing λ Using Validation Dataset



Pick up the lambda with the lowest mean value of rmse calculated by Cross Validation approach

Take-Home Messages

- What is overfitting
- What is regularization
- How does Ridge regression work
- Sparsity properties of Lasso regression
- How to choose the regularization coefficient λ