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Regression: Recap
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d
d

d
d𝑧 = 1, 𝑥, 𝑥2, … , 𝑥𝑑 ∈ 𝑅𝑑

𝑦 = 𝑧𝜃



Which One is Better?
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No, this can lead to overfitting!

D=0 D=1

D=9D=3



The Overfitting Problem
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• The training error is very low, but the error on test set is large.

• The model captures not only patterns but also noisy nuisances 

in the training data.

D=9

𝐷



The Overfitting Problem
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• In regression, overfitting is often associated with large Weights 

(severe oscillation)

• How can we address overfitting?

D=9



Regularization 
(smart way to cure overfitting disease )

Fit a linear line on sinusoidal with just two data points 

Put a brake on fitting



Who is the winner?

ҧ𝑔 𝑥 : average over all lines

bias=0.21; var=1.69 bias=0.23; var=0.33



Polynomial Model

Let’s rewrite it as:

𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥
2 +⋯+ 𝜃𝑑𝑥

𝑑 + 𝜖

𝑦 = 𝜃0 + 𝜃1𝑧1 + 𝜃2𝑧2 +⋯+ 𝜃𝑑𝑧d + 𝜖 = 𝒛𝜽



Regularizing is just constraining the weights (𝜽)

For example: let’s do a hard constraining

𝑦 = 𝜃0 + 𝜃1𝑧1 + 𝜃2𝑧2 +⋯+ 𝜃𝑑𝑧d

subject to

𝜃𝑑 = 0 𝑓𝑜𝑟 𝑑 > 2

𝑦 = 𝜃0 + 𝜃1𝑧1 + 𝜃2𝑧2 + 0 +⋯+ 0



𝜃0

𝜃1

𝐸 𝜃 =
1

𝑁


𝑖=1

𝑛

𝑦{𝑖} − 𝑧{𝑖}𝜃
2



Project the same graph on x-y using contour plot

𝜃0

𝜃1



𝜃0

𝜃1

Linear regression with a very high 

polynomial degree solution



𝜃0

𝜃1



How can we get an optimal solution with a positive error for a model that 

overfits?

We need to introduce a constraint

𝜃1

𝜃0

𝑔 𝜃 = 𝜃0
2 + 𝜃1

2 = 𝜃𝑇𝜃 = 𝐶

An iso-surface 

example



Error function together with a 

new introduced constraint

𝐸 𝜃 =
1

𝑛


𝑖=1

𝑛

𝑦𝑖 − 𝑧𝑖𝜃
2

𝑔 𝜃 = 𝜃0
2 + 𝜃1

2 = 𝜃𝑇𝜃

𝜃0

𝜃1



Let’s define the Lagrange function

𝐿 𝜃, 𝜆 = 𝐸 𝜃 + 𝜆𝑔(𝜃)

𝐿 𝜃, 𝜆 = 𝐸 𝜃 + 𝜆𝜃𝑇𝜃

∇𝐿 𝜃, 𝜆 = 0 ∇[𝐸 𝜃 + 𝜆𝜃𝑇𝜃] = 0

∇[𝐸 𝜃 ] + 𝜆∇[𝜃𝑇𝜃] = 0



How to enforce the gradient of Lagrange function to be zero



𝜃0

𝜃1



Let’s calculate the gradients

∇ 𝜃𝑇𝜃 = 2𝜃Gradient of constraint 𝑔(𝜃)

∇[𝐸 𝜃 ] + 𝜆∇[𝜃𝑇𝜃] = 0

∇ 𝐸 𝜃 = −𝜆∇[𝜃𝑇𝜃]

𝛻𝐸 𝜃 = −2𝜆𝜃

𝛻𝐸 𝜃 + 2𝜆𝜃 = 0
Let’s do integration 𝐸 𝜃 + 𝜆𝜃𝑇𝜃



The effect of low Lambda

𝐸 𝜃 +
𝜆

𝑁
𝜃𝑇𝜃

𝜃0

𝜃1



The effect of high Lambda

𝐸 𝜃 +
𝜆

𝑁
𝜃𝑇𝜃

𝜃0

𝜃1



Minimize 𝐸 𝜃 + 𝜆𝜃𝑇𝜃

Regularized Learning

Now we know Why this term 

leads to the regularization of 

parameters

෨𝐸 𝜃

=
1

𝑁


𝑖=1

𝑛

𝑦{𝑖} − 𝑧{𝑖}𝜃
2
+

𝜆

2𝑁
𝜃 2

2Regularized Error

L2 Regularization term



Outline

• Overfitting and regularized learning

• Ridge regression

• Lasso regression

• Determining regularization strength

35



Ridge Regression
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𝜃0 + 𝜃1𝑧1 + 𝜃2𝑧2 +⋯+ 𝜃𝑑𝑧d + 𝜖 = 𝒛𝜽

෨𝐸 𝜃

=
1

𝑁


𝑖=1

𝑛

𝑦{𝑖} − 𝑧{𝑖}𝜃
2
+ 𝜆 𝜃 2

2
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𝜕 ෨𝐸 𝜃

𝜕𝜃
= −𝑧𝑇 𝑦 − 𝑧𝜃 + 𝜆𝜃

𝑧𝑇𝑧 + 𝜆𝐼 𝜃 = 𝑧𝑇𝑦

𝜃 = 𝑧𝑇𝑧 + 𝜆𝐼 −1𝑧𝑇𝑦

෨𝐸 𝜃 =
1

𝑁


𝑖=1

𝑛

𝑦{𝑖} − 𝑧{𝑖}𝜃
2
+ 𝜆 𝜃 2

2General form

෨𝐸 𝜃 =
1

𝑁
𝑦 − 𝑧𝜃 T(y − 𝑧𝜃) + 𝜆 𝜃 2

2Matrix form



Ridge Regression Example
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𝑓 𝑥, 𝜃 = 𝑧𝜃 𝑧: 𝑥 → 𝑧

𝜃 ∈ ℝ𝐷+1

D,

෨𝐸 𝜃 =
1

𝑁


𝑖=1

𝑛

𝑦{𝑖} − 𝑧{𝑖}𝜃
2
+ 𝜆 𝜃 2

2
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D = 7
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D = 3 D = 5



Outline

• Overfitting and regularized learning

• Ridge regression

• Lasso regression

• Determining regularization strength

43



Regularized Regression
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Now let’s look at another regularization choice.

෨𝐸 𝜃 =
1

𝑁


𝑖=1

𝑛

𝑦{𝑖} − 𝑧{𝑖}𝜃
2
+ 𝜆 𝜃 2

2

1

𝑁


𝑖=1

𝑛

𝑦{𝑖} − 𝑧{𝑖}𝜃
2

Squared loss\Error

𝜆 𝜃 2
2

L2 Regularizer



The Lasso Regularization (L1 norm) and sparsity
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෨𝐸 𝜃 =
1

𝑁


𝑖=1

𝑛

𝑦{𝑖} − 𝑧{𝑖}𝜃
2
+ 𝜆 𝜃 1

L1 norm induces sparsity. This means that 

some of the weights become zero, and the 

feature contribution will be completely 

removed. L1 Regularizer could be used for 

feature selection

Lasso = Least Absolute Shrinkage and Selection Operator



Ridge Regularizer

𝑔 𝜃 = 𝜃0
2 + 𝜃1

2 = 𝜃𝑇𝜃

Lasso Regularizer

𝑔 𝜃 = 𝜃0 + 𝜃1 = 𝜃

𝜃1

𝜃0

Animation

https://www.dropbox.com/scl/fi/bg7y6hhqyl5wb9p023rbq/video-lasso.mp4?rlkey=faiw3trxrkq2v3rjzuaygu62j&st=kilw80x9&dl=0


Let’s say we have two parameters (𝜃0 𝑎𝑛𝑑 𝜃1)

𝜃𝑙𝑖𝑛

𝐸 𝜃 :   which is constant on the surface of 

the ellipsoid

𝜃0

𝜃1

𝑀𝑖𝑛 𝐸 𝜃 =
1

𝑁
z𝜃 − 𝑦 𝑇 z𝜃 − 𝑦 + 𝜆 𝜃 1

𝑪

𝑪

−𝑪

−𝑪

Sharp edges

𝜃 =
𝜃0
𝟎

Interesting way for 

feature selection

𝜃𝑟𝑒𝑔

The chance is very high 

to hit the sharp corners 

first

Graph

https://www.desmos.com/calculator/bscfnzmlaz


Ridge versus Lasso

෨𝐸 𝜃 =
1

𝑁
𝑦 − 𝑧𝜃 T(y − 𝑧𝜃) + 𝜆 𝜃 2

2

Ridge

It is a convex model

Both mean squared error 

and L2 regularizer are 

differentiable.

We can get a closed form 

solution

෨𝐸 𝜃 =
1

𝑁
𝑦 − 𝑧𝜃 T(y − 𝑧𝜃) + 𝜆 𝜃 1

Lasso

L1 regularizer is NOT 

differentiable.

We can NOT get a closed 

form solution

It is a convex model



Sub-gradient Descend in Lasso

෨𝐸 𝜃 =
1

𝑁
𝑦 − 𝑧𝜃 T(y − 𝑧𝜃) + 𝜆 𝜃 1

𝜕 ෨𝐸 𝜃

𝜕𝜃
= −𝑧𝑇 𝑦 − 𝑧𝜃 +

𝜕 𝜆 𝜃 1

𝜕𝜃

𝜕 ෨𝐸 𝜃

𝜕𝜃
= −𝑧𝑇 𝑦 − 𝑧𝜃 + 𝜆𝑠𝑖𝑔𝑛(𝜃)

Using Sub-gradient

In s𝑖𝑔𝑛 function, we use this sub-gradient line 

as our under-estimator (below our function)
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Leave-One-Out Cross Validation
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K-Fold Cross Validation
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Choosing λ Using Validation Dataset

Pick up the lambda with the lowest 

mean value of rmse calculated by 

Cross Validation approach



Take-Home Messages

• What is overfitting

• What is regularization

• How does Ridge regression work

• Sparsity properties of Lasso regression

• How to choose the regularization coefficient λ
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