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Regression: Recap

0 1

* Suppose we are given a training set of N observations

* Regression problem is to estimate y(x) from this data



Regression: Recap
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» Want to fit a polynomial regression model

y=0p+0;x +0,x*+--+60,x%+¢

9 7 = {1, X,Xz, ...,Xd} € Rd and 0 = (90, 91: 92: "'-'Qd)T

y = z0



Which One iIs Better?
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¢ Can we increase the maximal polynomial degree to very large,
such that the curve passes through all training points?

No, this can lead to overfitting!



The Overfitting Problem
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® The training error is very low, but the error on test set is large.

® The model captures not only patterns but also noisy nuisances
In the training data.



The Overfitting Problem

0 e 1

® In regression, overfitting is often associated with large Weights
(severe oscillation)

® How can we address overfitting?



Regularization
(smart way to cure overfitting disease )

without regularization with regularization

Put a brake on fitting .

Fit a linear line on sinusoidal with just two data points



Who iIs the winner?

g (x): average over all lines

without regularization with regularization

bias=0.21; var=1.69 bias=0.23; var=0.33



Polynomial Model

Want to fit a polynomial regression model

Y =00+ 0:x +0,x* + -+ 0;x% + €

Let’s rewrite it as:

y:HO+81Z1+82Z2+"'+HdZd+€:Z9



Regularizing is just constraining the weights (0)

For example: let's do a hard constraining
Yy = 90 + 9121 + 62Z2 + .-+ HdZd

subject to
0, =0 ford>2

o

y=90+91Z1+62Z2+0+“'+0






Project the same graph on x-y using contour plot




Linear regression with a very high
polynomial degree solution
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How can we get an optimal solution with a positive error for a model that
overfits?
We need to introduce a constraint

An iso-surface

_ 2 2 oTp example
g®) = 05+07=0T0=C




Error function together with a
new introduced constraint

g(@) = 63 +62 =070




Let’s define the Lagrange function
L(6,2) = E() + Ag(6)

L(6,2) = E(0) + 1070
VL(O,) =0  V[E()+21070] =0

V[E(0)] + AV[8T0] = 0



How to enforce the gradient of Lagrange function to be zero







Let's calculate the gradients

Gradient of constraint g (6)

V[E(9)] + AV[8T0] = 0
V[E(8)] = —AV[87 6]

VE(O) = —2A6

VE(6) + 216 = 0

= Let’s do integration

E(6) -

v[oTo] = 26

- 1070




The effect of low Lambda

A
E0)+—=0"6
(6) +




The effect of high Lambda

A
E0)+—=0"6
(6) +




Regularized Learning

Now we know Why this term
leads to the regularization of

/ parameters
Minimize E(0) + 1076

E(9)

Reqularized Error 1 - S o2 A
; == (y9 = 2036)" + 110113
i=1

/

L2 Regularization term




Outline

Overfitting and regularized learning
Ridge regression <
Lasso regression

Determining regularization strength

35



Ridge Regression

E(6)

1 . N2
== > (y9 = 2036)" + 2ll613
1=1

00 —+ 01Z1 —+ 82Z2 + -+ HdZd + € = z0
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General form

Matrix form

n

_ 1 . o2

E0) = ) (v = 2036)" + 111
(=1

_ 1
E©) = (v = 20)"(y - 26) + All6]I

0E(6)
a0

= —z'(y—2z8) + 10

(zTz+ A6 = z'y
0=z'z+2AD)1zly
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Ridge Regression Example

ideal fit

* The red curve is the true function (which is 15

O Sample points

Ideal fit

not a polynomial)

* The data points are samples from the
curve with added noise inYy.

» There is a choice in both the degree, D, of
the basis functions used, and in the strength
of the regularization
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O Sample points
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least-squares fit

O Sample points
Ideal fit
Least-squares solution
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least-squares fit
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© Sample points
Ideal fit
Least-squares solution
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Regularized Regression

n

_ 1 . N2

E©) =~ ) (v —2036)" + 1111
=1

n

1 . 2

Squared loss\Error Nz(y{‘} — z{19)
=1

L2 Regularizer All61I

Now let’s look at another regularization choice.
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The Lasso Regularization (L1 norm) and sparsity

Lasso = Least Absolute Shrinkage and Selection Operator

n

_ 1 . N2

E©) =~ ) (v —2096)" + all6ll,
=1

L1 norm induces sparsity. This means that
some of the weights become zero, and the
feature contribution will be completely
removed. L1 Regularizer could be used for
feature selection
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Ridge Regularizer Lasso Regularizer

g(6) = 62 + 62 = 070 g@) =6,+6,= 6

Animation



https://www.dropbox.com/scl/fi/bg7y6hhqyl5wb9p023rbq/video-lasso.mp4?rlkey=faiw3trxrkq2v3rjzuaygu62j&st=kilw80x9&dl=0

Let’'s say we have two parameters (6, and 6,)

-4

Interesting way for
feature selection

1
Min E(6) = ~ (20 = y)'(z0 —y) + Aoy

E(6): which is constant on the surface of
the ellipsoid

The chance is very high
to hit the sharp corners
first

Graph



https://www.desmos.com/calculator/bscfnzmlaz

Ridge versus Lasso

Ridge Lasso
B©) =5 &~ 20)T(y — 26) + AlOI1 F(O) = 5 &~ 20)T(y — 26) + Aol
It is a convex model It is a convex model
Both mean squared error L1 regularizer is NOT
and L2 reqgularizer are differentiable.

differentiable.

We can get a closed form We can NOT get a closed
solution form solution



Sub-gradient Descend in Lasso

~ 1
E©) = O = 20)T(v — 26) + 21101,

0E() 0118111
0~ 2 020+

Using Sub-gradient

\ / ag(eg) =~z (y — 26) + Asign(6)

In sign function, we use this sub-gradient line
as our under-estimator (below our function)
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Leave-One-Out Cross Validation

Forevery 1 =1,...,n:

» train the model on every point except ¢,

» compute the test error on the held out point.
n

1 ~(—i
Average the test errors. CV(n) _ - Z(yi . yf ))2
1=1
123 N
123 f
123 :

123 n

123 n
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K-Fold Cross Validation

Split the data into k£ subsets or folds.

Forevery 1 =1,...,k:

» train the model on every fold except the ith fold,

» compute the test error on the ¢th fold.

Average the test errors.

123 n

11765 47
11765 47
11765 47
11765 47

11765 47



erraor norm

Choosing A Using Validation Dataset
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Pick up the lambda with the lowest
mean value of rmse calculated by
Cross Validation approach
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Take-Home Messages

What is overfitting

What is regularization

How does Ridge regression work
Sparsity properties of Lasso regression

How to choose the regularization coefficient A
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